Applied Data Science in Economics What can Data Science contribute to Economics?

Julian Oliver Doerr

November 4, 2019

Research project

Machine learning

Macroeconomic forecasting

Blanchard (2014): 'The **techniques** we use [...] were **best suited** to a worldview in which **economic fluctuations** occurred but were **regular**, and essentially self correcting.'

Romer (2016): 'Post-real macro models [and their] predictions were wildly incorrect, and [...] the **doctrine** on which they were based is **fundamentally flawed**.'

Haldane (2016): 'Few forecasters foresaw even a slight downturn in GDP in 2008 and none foresaw a recession. [...] At root, these were failures of models, methodologies and mono-cultures. [...] The **methodological mono-culture** produced, unsurprisingly, the same crop.'

(Standard) econometrician forecasting toolbox

Forecasting by:

- history of target variable (e.g. ARIMA)
- other variables (e.g. VAR)
- factors (e.g. FAVAR)
- ► ...

This project aims at forecasting real GDP growth by means of:

- Random Forest (RF)
- Gradient Boosting (GB)
- Support Vector Regression (SVR)

Balanced panel with quarterly data of **202 features** from 1959Q3:2019Q2

Features comprise time series related to:

- Iabor market
- housing market
- stock market
- price indices
- interest rates
- sentiment surveys

Julian Doerr | Applied Data Science in Economics

>

Table: Forecasting performance

Model	1-quarter-ahead RMSE Accuracy increase		1 RMSE	-year-ahead Accuracy increase
RW	0.657		0.876	
ARIMA	0.597	9.1%	0.698	20.3%
RF	0.537	18.2%	0.628	28.4%
GB	0.504	23.3%	0.588	32.9%
SVR	0.478	27.2%	0.700	20.1%

Note: Performance based on forecasting errors in test set (2007Q2:2019Q2). Accuracy increase relative to RMSE of RW model.

OECD (2019) leading indicators

▷ more information

202 features

6 leading indicators

- 1 Housing starts
- 2 Manufacturer's new orders of durable good
- 3 S&P 500 stock price index
- 4 Consumer sentiment index
- 5 Weekly hours worked in manufacturing
- 6 Yield curve

OECD (2019) leading indicators

Source: Time series from McCracken and Ng (2016), recession dates from NBER

Table: Forecasting performance: Leading indicators

Model	1-quarter-ahead RMSE Accuracy increase		1-year-ahead RMSE Accuracy increas	
VAR RF GB SVB	0.643 0.608 0.553 0.625	5.6% 14.1% 2.9%	0.680 0.655 0.628 0.667	3.7% 7.6% 2.0%

Note: Performance based on forecasting errors in test set (2007Q2:2019Q2). Accuracy increase relative to RMSE of VAR model.

Would have machine learning models **predicted** the **last financial crisis?**

We do not know without real-time data.

Would have machine learning models yielded more accurate forecasts?

Results support it.

Reproducibility

machineLearning-economicForecasting

References

Athey, S., & Imbens, G. W. (2017). The state of applied econometrics: Causality and policy evaluation. *Journal of Economic Perspectives*, *31*(2), 3–32.
Blanchard, O. (2014). Where danger lurks. *Finance & Development*, *51*(3), 28–31. Retrieved from https: //www.imf.org/external/pubs/ft/fandd/2014/09/pdf/blanchard.pdf
Haldane, A. (2016). The dappled world. *Shackle Biennial Memorial Lecture*. Retrieved from https://www.bankofengland.co.uk/-/media/boe/files/speech/2016/the-dappled-world.pdf?la=en&hash= 5775E592A5E70791B5E883604EF9E817C5185631

- McCracken, M. W., & Ng, S. (2016). FRED-MD: A monthly database for macroeconomic research. *Journal of Business & Economic Statistics*, 34(4), 574–589. doi:10.1080/07350015.2015.1086655
- OECD. (2012). OECD system of composite leading indicators. Retrieved from http://www.oecd.org/sdd/leading-indicators/41629509.pdf
- OECD. (2019). OECD composite leading indicators: Turning points of reference series and component series. Retrieved from http://www.oecd.org/sdd/leading-indicators/CLI-components-andturning-points.pdf
- Romer, P. (2016). The trouble with macroeconomics. *The American Economist, 20*, 1–20. Retrieved from https://ccl.yale.edu/sites/ default/files/files/The%20Trouble%20with%20Macroeconomics.pdf

Backup

Training data	1959Q3:2007Q1
Test data	2007Q2:2019Q2
Model selection	BIC
Search method	Grid search
Final parameters: p q	2 0

Training data	1959Q3:2007Q1
Test data	2007Q2:2019Q2
Model selection	BIC
Search method	Grid search
Final parameters:	
p	2

Training data Test data	1959Q3:2007Q1 2007Q2:2019Q2
Model selection	Blocked cross validation based on rolling-origin re- calibration for hyperparameter tuning
Search method	Random Search

Final parameters:	
Μ	16
d_{try}	54
node _{min}	36

Note: Parameter results based on full feature space

Training data Test data Model selection	1959Q3:2007Q1 2007Q2:2019Q2 Blocked cross validation based on rolling-origin re-
Search method	calibration for hyperparameter tuning Random Search
Final narameters:	

Final parameters.	
Μ	411
ν	0.074
depth _{max}	8

Note: Parameter results based on full feature space

Models

Training data	1959Q3:2007Q1
Test data	2007Q2:2019Q2
Model selection	Blocked cross validation based on rolling-origin re- calibration for hyperparameter tuning
Search method	Random Search

Final parameters:	
С	0.019
ϵ	0.393
kernel	sigmoid

Final kernel parameters:

γ	0.005
С	0

Note: Parameter results based on full feature space

Sigmoid kernel: $K(x_i, x) = \tanh (\gamma \langle x'_i, x \rangle + c)$

Failure of macroeconomic forecasts

Figure: Range of forecasts for UK GDP growth from 2008 onwards produced by 27 economic forecasters in 2007

Source: Haldane (2016)

Best machine learning forecast

Figure: Gradient Boosting on-year-ahead forecast during global financial crisis

Table: Forecasting performance

Model	1-quarter-ahead		1-year-ahead	
Model	RMSE	Accuracy increase	RMSE	Accuracy increase
ARIMA	0.597		0.698	
RF	0.537	10.1%	0.628	10.0%
GB	0.504	15.6%	0.588	15.8%
SVR	0.478	19.9%	0.700	-0.3%

Note: Performance based on forecasting errors in test set (2007Q2:2019Q2). Accuracy increase relative to RMSE of ARIMA model.

Leading indicators

Table: U.S. leading indicators

Leading indicator	Explanation
Housing starts	Households spend substantial fractions of their income not only on their homes, but also what goes in them. This affects employ- ment in the construction sector and money demand. Moreover, housing market contribues a substantial fraction to overall GDP.
Consumer sentiment	Reflects how well-off consumers expect to be in the future relative to today affecting future spending.
S&P 500 stock prices	Present value of expected future returns (incorporates expecta- tions!)
New orders manufacturing	Increases in new orders for consumer goods and materials usu- ally mean positive changes in actual production. The new orders decrease inventory and contribute to unfilled orders, a precursor to future revenue.
Hours worked manufacturing	Adjustments to the working hours of existing employees are usu- ally made in advance of new hires or layoffs.
Interest rate spread	Also referred as yield curve which entails expected direction of short-, medium- and long-term interest rates. This is particularly true when the curve becomes inverted, that is, when the longer- term returns are expected to be less than the short rates.

Note: Leading indicators determined by OECD (2019). OECD (2012) defines leading indicators as time series which exhibit leading relationship with the reference series (GDP) at turning points.

Leading indicators

Source: Time series from McCracken and Ng (2016), recession dates from NBER

⊲ presentation

- structural VAR models
- econometric factor models (dimension reduction)
- neural networks
- turning point analysis
- interval forecast (uncertanity)
- Diebold-Mariano Test
- writing

Data revisions

Figure: Revision of 2008Q4 U.S. GDP growth at different vintage dates

Source: The Real-Time Data Research Center of the Federal Reserve Bank of Philadelphia

Limitations of machine learning

Econometric models

Curse of dimensionality

Machine learning methods

Curse of interpretability **Causality** as one of the most important research fields in social sciences.

Usually no experimental/laboratory setup in economics. Without **randomized experiments** challenge to find causation.

Econometric solutions:

- Regression discontinuity design (RDD)
- Difference in difference (DD)

► ...

But economic research is developing fast.

Athey and Imbens (2017): 'Machine learning methods provide important new tools to improve estimation of causal effects in high-dimensional settings, because in many cases it is important to flexibly control for a large number of covariates as part of an estimation strategy for drawing causal inferences from observational data.'

Back to slide 1 What can Data Science contribute to Economics?

Machine learning

- forecasting
- covariate selection in traditional econometric models

▶ ..

Natural Language Processing

- effect of press releases/social media contents on economic time series
- sentiment in newspaper articles and effect on investor behavior/bankruptcy (self-fulfilling prophecies)

۰.

Network analysis

- effect of social networks on employment and inequality
- networks of surviving companies

►.