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Abstract

Macroeconomic forecasters often show a poor track record in pro-
ducing reliable predictions. Especially times of economic crises
have been consistently missed by traditional forecasting models,
which is why the global financial crisis of 2007 - 2009 caught many
people by surprise. Theory-based models and pure time series for-
mulations, both traditionally used in macroeconomic forecasting,
suffer the curse of dimensionality when being confronted with a
high dimensional space of possible predictors. In times of in-
creasing data availability, this opens the way to rethink macroe-
conomic forecasting. This paper analyzes the application of ma-
chine learning methods in forecasting real GDP growth. Machine
learning poses a natural extension to the more traditional models
because it is designed to extract information from high dimen-
sional feature spaces. Moreover, machine learning methods are
nonlinear by construction which allows them to capture nonlinear
relations typically encountered among macroeconomic variables
in recessions. Given the failure of existing forecasting models and
the advantages of machine learning, the goal of this paper is to as-
sess to which extent machine learning algorithms may contribute
to the challenge of macroeconomic forecasting.
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1 Introduction

1.1 Call for New Approaches in Economics

The prediction of future economic development is a controversial issue which has kept economists busy
for years. The International Monetary Fund releases its global forecasting calculations biannually in
the World Economic Outlook. The Organization for Economic Co-operation and Development (OECD)
publishes its Economic Outlook which comprises Gross Domestic Product (GDP) forecasts of its mem-
ber states twice a year. The World Bank, too, conducts economic projections published in the Global
Economic Prospects and the European Central Bank (ECB) issues its own Survey of Professional Fore-
casters. The list of renowned economic institutions is long which highlights the importance of the topic.
In fact, many decision-makers rely on economic forecasts and closely watch what economists believe to
happen in the near and distant future. Businesses, for example, base their spending and hiring plans on
the future outlook of the economy. Also, financial investors show in their investment decisions a high
degree of sensitivity to economic forecasts. Last but not least, government officials rely on macroeconomic
projections in their policy-making, aiming at cushioning or even preventing economic downturns. Given
the importance and the resources spent on economic forecasting, a natural question arises: How well can
economists predict future economic growth?

As it turns out, the answer to this question is rather disillusioning, especially when it comes to economists’
capability of forecasting economic crises. This has become a humbling truth in the global financial crisis
of 2007 - 2009. Both extent and severeness of the financial crisis have been largely unforeseen by most
economists. In fact, as Andrew G Haldane, Chief Economist at the Bank of England points out, none
of the economic forecasters had anticipated a recession and the majority had not even expected a slight
economic slowdown prior to 2007. It turned out that the 2008 one-year ahead GDP growth forecast error
of 27 reputable economic forecasting institutions amounted to 8 percentage points on average (Bank of
England, 2016). The failure of not even being able to predict roughly what in 2009 climaxed as the
worst financial crisis after the Great Depression in 1930 pushed macroeconomics as a scientific field of
research into its own crisis. In the UK, for instance, the Queen questioned economic researchers during a
visit at the London School of Economics how nobody had foreseen the crisis, especially given its ferocity.
In response to this critical question, a group of leading academics and practitioners from the field of
economics drafted a letter which was sent to Buckingham Palace on July 22, 2009. In this letter, the
authors mention among other things that economic forecasting was based on ‘financial and economic
models that were good at predicting the short-term and small risks, but few were equipped to say what
would happen when things went wrong as they have’ in 2008 (Besley & Hennessy, 2009, p. 9). Many
renowned macroeconomists followed this self-critical assessment and started to question their own disci-
pline in the aftermath of the global financial crisis. Much of their criticism challenges the methods and
models predominantly used in economic research.

Blanchard and Romer, for example, have criticized the predominant use of Dynamic Stochastic Gen-
eral Equilibrium (DSGE) models which are founded on often flawed economic theory. Blanchard (2014)
strongly challenges the linear view of mainstream macroeconomics on how economic aggregates relate to
each other. He highlights that the global financial crisis has taught that small shocks in one economic
sector, e.g. the U.S. housing market, can cause major disruptions in the global economy. Such extreme
nonlinear relations between markets and economies cannot be captured by ‘techniques [that] were best
suited to a worldview in which economic fluctuations occurred but were regular, and essentially self cor-
recting’ (Blanchard, 2014, p. 28). It seems little surprising that linear models produce poor forecasts
if the reality is characterized by strong degrees of nonlinearity. Chauvet and Potter (2013) support the
view that during recessions linear relations break down, causing linear forecasting models to produce
large forecasting errors.

Romer’s (2016) criticism strongly contests the doctrine of exogenous shocks in DSGE forecasting models.
He argues quite sharply that ‘post-real macro models [and their] predictions were wildly incorrect, and
[...] the doctrine on which they were based is fundamentally flawed’ (Romer, 2016, p. 19). Romer refers to
the assumption of exogenous shocks in theory-based macro models which ‘explain’ a significant fraction
of forecast variance in GDP. In fact, if much of the forecasting accuracy in DSGE models is determined
by exogenous events that the model itself cannot explain, the question arises which value such models
add to the task of macroeconomic forecasting. Romer even goes as far as questioning whether the current
state of macroeconomic modeling still qualifies as scientific research.

In a similar vein, Haldane strongly criticizes the ‘methodological mono-culture’ in macroeconomic fore-
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casting which ‘spectacularly’ failed to even come close to predicting a recession in 2008 (Bank of England,
2016, p. 7). On the one hand, he blames the uniform structure of economic forecasting models which
were not designed to foresee such events. On the other hand, he criticizes the lack of interdisciplinary in
economics which hinders the discipline to come up with new models to forecast economic fluctuations.
Haldane concludes that ‘even if some of the post-crisis criticism of workhorse macro-economic models is
overdone, it still raises the question of whether new modeling approaches might be explored [...] which
better match real-world dynamics.’ (Bank of England, 2016, p. 8). He continues that ‘there could be
considerable scope for disciplinary cross-pollination of ideas and models’ (Bank of England, 2016, p. 8).
Similarly, Blanchard (2014, p. 31) concludes his criticism by stressing the need to ‘explore [...] all sorts
of models [which] are more aware of nonlinearities and the dangers they pose’. Generally, the method-
ological malaise that macroeconomic forecasters experienced in the aftermath of the last crisis opens the
gates to rethink macroeconomic forecasting and to explore new techniques of improving and developing
existing methods. Renowned economists themselves have called for a renewal of modeling techniques in
economic forecasting.

Following this call for new approaches in macroeconomic forecasting, this paper pursues an atheoretical
approach to the task of forecasting GDP growth. It refrains from incorporating macroeconomic theory
or micro-founded behavioral science (such as in DSGE models) into the forecasting models. Rather,
it focuses on the efficient exploitation of information entailed in past data for the prediction of future
realizations. The fundamental belief in this information-theoretic approach is that past and current re-
alizations of macroeconomic variables allow to make projections about the future state of the economy.
A natural starting point for such atheoretical models is the use of machine learning methods which are
designed to algorithmically extract information encrypted in past data.

1.2 Machine Learning: A new Approach in Economic Forecasting?

Similar to the above criticism, Reis (2018) admits that macroeconomic forecasters have performed poorly
in the past but questions whether the task of macroeconomists is to provide precise forecasts of future
economic activity or if their duty is to provide policy-making guidance in a forward looking manner. Reis’
concern is fundamental to this paper and requires some further insight into the difference between fore-
casting models based on economic theory and atheoretical machine learning methods. The former group
of models - with DSGE as the workhorse in macroeconomics - consists of structural models based on
economic rationale. They aim at describing the interrelation of macroeconomic variables with economic
theory. Founded on behavioral microeconomics such as the Euler equation for intertemporal consump-
tion smoothing and policy rules such as the Taylor principle for Central Bank’s interest rate setting,
theory-based models allow to ‘tell a story’ (Giacomini, 2015, p. 24). They are designed to illustrate
causal channels about the relationships and dynamic forces that drive the economy. However, this ap-
proach produces valid forecasts only if the model describes the real world mechanisms correctly. Machine
learning methods, in contrast, follow a data-driven approach free of any theory-based constraints which
usually compresses the data in a tight (and often linear) corset. It is the approach to let the data speak
which, in the context of a forecasting task, means that today’s information about the economy has some-
thing to tell about how the economy looks tomorrow. In this respect, machine learning models focus on
minimizing the forecasting error with the objective to produce the most accurate projection about the
future state of the economy.

Most Central Banks nowadays use DSGE models for both analyzing policy effects and forecasting (Giaco-
mini, 2015). However, there is typically a trade-off to make between a model’s forecasting capability and
its theoretical foundation desirable for policy evaluations (Giacomini, 2015; Pagan, 2003). Neglecting
this trade-off is another reason why macroeconomic forecasters have performed so poorly in the past.
They have misused theory-based policy models for the purpose of forecasting. In light of this trade-off
and in response to Reis’ criticism, the author of this paper stresses macroeconomists’ necessity of being
capable of handling both - policy evaluation and forecasting - but questions whether both tasks can be
accomplished by the same class of models in a satisfying way. In fact, the objective of sketching future
economic growth as precisely as possible necessitates techniques which efficiently process complex and
rich sets of information. This contrasts with theory-based methods where researchers pick one model
and a selection of variables based on principles and therefore essentially restrict the set of information
entering their forecasting model.

Many economists acknowledge that the amount of information available for economic research has been
grown rapidly and that macroeconomics increasingly acts in a data-rich environment (Bernanke & Boivin,
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2003; Clements & Hendry, 2011). This has encouraged economists to consider general applications of
data-driven machine learning methods in the field of economics in recent years (see for example Athey
and Imbens (2017), Mullainathan and Spiess (2017), Varian (2014)). The scope of this paper is to ana-
lyze whether machine learning algorithms can contribute to the specific issue of forecasting GDP growth.
To answer this question three specific supervised learning algorithms, Random Forest (RF), Gradient
Boosting (GB) and Support Vector Regression (SVR), are applied in forecasting U.S. GDP growth. The
performance of these models is benchmarked against more traditional econometric time series models
which have been extensively used in literature before. These techniques comprise Autoregressive Inte-
grated Moving Average (ARIMA) models, Vector Autoregressive (VAR) models and Factor-Augmented
Vector Autoregressive (FAVAR) models.

Literature on the specific application of machine learning algorithms in GDP forecasting is very sparse.
Biau and D’Elia (2010) have pioneered the use of RF to forecast European Union short-term GDP
growth. They find that RF outperforms linear Autoregressive (AR) models and recommend the use of
RF if forecasters are confronted with a large set of potential predictors. Buchen and Wohlrabe (2011)
benchmark GB forecasts of U.S. industrial production against factor models. Similar to Biau and D’Elia
(2010), they find that GB is a serious competitor especially if researchers face a large set of potential
predictor variables. Gogas, Papadimitriou, and Takli (2013) use a SVR framework to forecast U.S. real
GDP. However, their analysis is limited to a small set of monetary aggregates as predictor variables and
they refrain from benchmarking against other modeling approaches. Tiffin (2016) uses RF to nowcast
GDP growth rates of Lebanon, a country which publishes its official GDP figures with a time lag of up to
two years. Their model indicates a Root Mean Squared Error of 1.17 in an out-of-sample nowcast which
does not include the global financial crisis. Compared to the results of this paper, this is a relatively poor
performance. Lehmann and Wohlrabe (2016, 2017) use boosting to forecast German economic activity
both on the national and the regional level. They use Ordinary Least Squares (OLS) as base learners and
find that the boosting model outperforms a boosted ARIMA model. Jung, Patnam, and Ter-Martirosyan
(2018) forecast real GDP growth of seven industrial and emerging countries using an ensemble of different
machine learning methods. The ensemble comprises RF and SVR among other methods. In their analy-
sis, machine learning has a higher forecasting accuracy than AR and VAR models. Gogas, Papadimitriou,
Matthaiou, and Chrysanthidou (2015) reformulate the forecasting issue into a classification task. They
use Support Vector Machine (SVM) to predict recessions by means of information from the yield curve.
In an out-of-sample assessment which includes the global financial crisis, the SVM classifier outperforms
econometric probit and logit models. In a similar vein, Döpke, Fritsche, and Pierdzioch (2017), Ng (2014)
use GB with regression trees as base learners to forecast recession probabilities for the Canadian and Ger-
man economy, respectively. Their analysis focuses on the relative importance of economic indicators in
forecasting the likelihood of future recessions. There are some more articles using neural networks to fore-
cast GDP growth (see Tkacz (2001) for example). However, while neural networks certainly belong to
the class of algorithmic machine learning methods, neural network forecasting is beyond the scope if this
paper. Hassania and Silva (2015) review the challenges forecasters face when being confronted with ‘big
data’. Part of their paper surveys ‘big data’ forecasting of GDP by means of advanced statistical methods.

This paper aims at validating the results of previous research. Moreover, the analysis focuses on two
specific aspects. First, it is examined how algorithmic models perform if they are confronted with differ-
ent sets of information. Since machine learning models are designed to cope with rich information sets
- nowadays often labeled as ‘big data’ -, it is assumed that forecasting errors get smaller the more vari-
ables are included in the forecasting tasks. To the author’s best knowledge, GDP forecasts produced by
machine learning methods have not been analyzed before in this specific context. Second, it is analyzed
how well machine learning forecasts perform in times of recessions relative to the forecasts produced by
more traditional time series models. Therefore, the general research scope is to analyze to what extent
machine learning poses a suitable tool in macroeconomic forecasting and how it may complement tradi-
tional forecasting tools.

The paper proceeds as follows. Section 2 introduces the data sources and the predictor variables used
in forecasting U.S. GDP growth. Section 3 explains the forecasting strategy within the machine learning
framework. Furthermore, it introduces the methodological foundations of the time series models and
the machine learning methods used in this paper. It also outlines how RF, GB and SVR can be used
for forecasting. Section 4 presents the estimated forecasting models and discusses the final forecasting
performance. Section 5 concludes.
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2 Data

2.1 Gross Domestic Product (Target)

The U.S. Bureau of Economic Analysis (BEA) is used as the primary source for U.S. Gross Domestic
Product data as it provides detailed information on how GDP figures are calculated. They track all U.S.
economic accounts and related statistics which together form the final GDP figures. Consequently, BEA’s
data source allows to gain a deep understanding of the derivation and composition of one of the most
closely watched aggregated statistic (see Bureau of Economic Analysis (2016) for more details). This
paper aims at forecasting real changes in GDP attributable to changes in the amount of final goods and
services produced in the economy excluding effects related to price changes. Since different price indices
are used as predictor variables in this paper, it is important to work with a deflated GDP figure as target
variable. For this purpose, BEA provides a measure of real GDP expressed in chained 2012 dollars.1

This paper uses the level of quarterly real GDP figures in order to calculate discrete quarter-over-quarter
growth rates of real GDP

yt = 100

[(
Yt
Yt−1

)
− 1

]
(1)

with Yt as GDP level at time t. The quarter-over-quarter growth rate of real GDP expressed in percent,
yt, forms the target variable in all forecasting models.

Figure 1 shows the respective time series of real GDP in levels on the right axis and real GDP growth
realizations on the left axis. The time horizon used in this paper comprises realizations from the first
quarter of 1959 to the second quarter of 2019 on a quarterly basis. This is equivalent to a time series with
242 observations. The time series are split into training and test sets in order to test the out-of-sample
performance of different forecasting models. The test set used for this purpose starts in 2007-Q2 and thus
includes the global financial crisis. Moreover, the figure highlights periods of recession in gray according to
the recession definition of the National Bureau of Economic Research (NBER). NBER defines a recession
as ‘significant decline in economic activity spread across the economy, lasting more than a few months,
normally visible in real GDP, real income, employment, industrial production, and wholesale-retail sales’
(National Bureau of Economic Research, 2012). With this definition, the NBER describes the business
cycle as continuous succession of expansions and recessions.2 Following this logic, the different forecasting
models developed in this paper are also tested in their capacity to foresee contractions in the business
cycle at an early stage by focusing on the predicted sign in the real GDP forecast.

2.2 Predictor Variables (Features)

The research division of the Federal Reserve Bank of St. Louis offers with its data service Federal Reserve
Economic Data (FRED) a comprehensive resource for macroeconomic research. FRED grants access to
more than 500,000 financial and economic variables from various public and private sources for the U.S.
economy. This paper uses FRED-QD, a collection of 248 quarterly macroeconomic time series mainly
retrieved from Federal Reserve Economic Data and enriched by variables from other public sources such
as stock indices from NASDAQ and S&P. The quarterly data comprises a period from 1959-Q1 to 2019-
Q2. FRED-QD is proposed as starting point for ‘big data’ research in macroeconomics (McCracken &
Ng, 2016) and is therefore highly suitable for time series machine learning models. In fact, with 248
explanatory variables and 242 observations most conventional econometric models are likely to run out
off degrees of freedom without some form of variable preselection. Machine learning methods do not
face this curse of dimensionality which is why they are appealing candidates for forecasts based on data
with so many potential predictors. Besides the wealth of information entailed in FRED-QD, the dataset
offers further advantages. It is updated and published regularly and it covers all data revisions that often
complicate macroeconomic research.3

FRED-QD comprises components of GDP as well as variables from industrial production and employ-
ment, time series from the housing market, inventory, sales and orders information, various price indices,
earnings and productivity measures, interest and exchange rates, stock market information, macroeco-
nomic money and credit measures as well as business, household and public balance sheet information.
For the majority of the series, recording starts in the first quarter of 1959. Unfortunately, 38 of the

1See Landefeld, Moulton, and Vojtech (2003) for more details on the methodology of chain-type indices.
2The NBER determines beginning and end of a recession and publishes the dates on its homepage. In the past, this has

often happened with a time lag of up to 21 months, clearly showing the ex-post nature of their assessment.
3See section 2.3 for more details on the topic of data revisions.
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Figure 1: U.S. Real GDP

Training set Test set

0

3

6

0

5,000

10,000

15,000

20,000

1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 2020

Year

R
e
a
l

G
D

P
G

ro
w

th
(i

n
%

)
R

e
a
l

G
D

P
(in

b
n

s
2
0
1
2

U
.S

.
$
)

Growth Rate Level

Note: Figure shows BEA GDP figures from 1959-Q1 to 2019-Q2. GDP figures are seasonally adjusted by removing variations
occurring in the same quarter every year. Seasonal adjustments follow BEA’s methodology (for more information, see Cowan,
Smith, and Thompson (2018)). Moreover, figures are expressed in real terms as chained 2012 U.S. dollars. More information
on inflation adjustments by chaining techniques can be found in Landefeld, Moulton, and Vojtech (2003).

time series have only a limited history with recordings starting later than 1959. Imputation methods for
these variables make little sense since the missing values only occur at the beginning of the series. As a
consequence, these series have to be dropped for the further analysis. Table 9 in appendix A provides a
detailed overview of all final predictor variables that enter the forecasting models.

In a forecasting setup, it is particularly important to work with macroeconomic variables which entail
early signals of major disruptions in economic performance. Fortunately, the dataset contains almost all
variables which the OECD defines as leading indicators of large economic adjustments for the U.S. econ-
omy (OECD, 2019). According to the OECD (2019), the following variables exhibit a leading relationship
with U.S. Gross Domestic Product: total number of housing starts (HOUST in appendix A), manufac-
turer’s new orders of durable goods in dollars (AMDMN OX), share prices such as the S&P 500 stock
price index (S P 500), the consumer sentiment index from the University of Michigan (UMCSEN TX),
weekly hours worked in manufacturing (AWHMAN) and the interest rate spread between 3-Month trea-
sury constant maturity and federal funds rate (TB3SMFFM). The only early indicator suggested by
OECD that is not included in the dataset is a business confidence indicator of the manufacturing sector.4

Appendix B provides a visual inspection of the above mentioned indicators. The visualizations reveal
a leading relationship between the indicators’ cyclicality and the starting dates of U.S. recessions. This
means that the above variables, indeed, serve as early predictors of economic downturns in the U.S. They
tend to have similar cyclical fluctuations as the business cycle but with the crucial difference that they
precede fundamental movements in GDP growth. This paper estimates a vector autoregressive forecast-
ing model built exclusively on U.S. leading indicators. Section 4.2.1 analyzes the forecasting performance
of this model as well as the performance of machine learning methods which incorporate only the leading
indicators.

2.3 Real-time Data versus Revised Data

Macroeconomic research is often confronted with a peculiarity in terms of data reporting which is usually
not encountered in other fields of research. It is common that macroeconomic variables are revised after
their initial publication, implying that today’s realization of a variable can differ from the realization at a
later point in time. There are many reasons why macroeconomic variables experience, often substantial,
revisions. When agencies publish data for the first time, they are confronted with only a limited set of
information. As time passes, more information becomes available, allowing for a more accurate measure-
ment of macroeconomic indicators. Another reason are changes in accounting standards or methodology
(Croushore & Stark, 2000). For example, variables measured in real terms must be revised if the base
year is updated. These factors explain why one and the same variable may have different values de-

4See OECD (2012) for more details on the methodology of leading indicators.
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pending on the vintage in which the variable is reported. This becomes obvious in figure 2 where the
value of the 2008-Q1 GDP growth figure is displayed for different reporting vintages. In the first five
quarters after the initial publication, 2008-Q1 GDP growth has been reported as positive number. Only
after the second revision of the figure in 2009-Q3, six quarters after the first release, agencies have had
enough information available to update to a negative growth figure. In later revisions the value has been
corrected further downward.

Figure 2: Actual 2008-Q1 Real GDP Growth by Vintages
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Note: Real-time data is retrieved from the Real-Time Data Research Center of the Federal Reserve Bank of Philadelphia.
Red triangles indicate dates when the 2018-Q1 growth figure has been revised. Green points represent periods of no revision.

The Real-Time Data Research Center of the Federal Reserve Bank of Philadelphia provides a dataset of
real-time quarter-over-quarter GDP growth rates. This dataset comprises historical vintages for the level
of GDP starting with the fourth quarter of 1965 as first available vintage. Unfortunately, there exist
no real-time data collections for the predictor variables. Therefore, this paper refrains from real-time
forecasts but produces forecasts based on the latest reporting vintage which is the second quarter of
2019. The consequences of not working with real-time data need to be weighed accordingly.

The major consequence of not working with real-time data in forecasting tasks is related to the compar-
ison of the performance of a forecasting model which has been used at different points in time. Due to
data revisions, a researcher may claim that a certain model would have produced better results in the past
that it actually did back then (Croushore & Stark, 2000). However, this may only be the case because
she uses revised and therefore richer data than available in the past. In other words, vintages matter if
one wants to compare models which have been produced at different points in time. Clearly, one way
to approach this issue is to work with real-time data when training a forecasting model. Croushore and
Stark (2000) show how forecasts are affected by the choice of data vintages. They compare forecasts based
on the most recently available vintage with forecasts based on real-time data and find that for simple
models such as autoregressive models the choice of vintage affects the forecasting results substantially.
One important contribution of this paper is to compare different forecasting models which are all based
on the same data source and the same vintage of data revision. Whether one takes real-time data or the
latest available revised data is therefore in this context of minor concern.

Nonetheless, in the context of machine learning frameworks, another remark is needed on real-time data.
Using training and test data sets, a perfectly accurate approach would look as follows: The training data,
used to estimate the model and strictly preceding the test data, needs to be based on the latest vintage
of data which has been available at the last date that is part of the training data set. Using a more
recent vintage implies that training observations entail information that only became available at a time
after the end of the training period. For the most honest assessment of the generalization performance of
a time series model, this is problematic as the strict time-based demarcation between training and test
data vanishes to some extent.
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3 Methodology

3.1 Forecasting Strategy

The general methodology in this paper is to predict U.S. GDP growth in t + h with h as forecasting
horizon by the set of D distinct macroeconomic time series observed today in t as well as by their
realizations in the past. U.S. GDP growth is defined as target variable y ⊂ R1. The term response
variable is used as synonym. The set of D macroeconomic time series is referred to as feature space
x = (x1, . . . , xD) ∈ X ⊂ RD. The single components of the feature space xd are termed as features.
Predictors or explanatory variables are used synonymously. The final forecasts are generated through a
set of approximating functions or models f(x; Θ) which are parameterized by Θ

ŷt+h = f(xt, . . . ,xt−p; Θ̂). (2)

The scope of this paper is to introduce machine learning methods to the issue of macroeconomic forecast-
ing. In order to evaluate how these methods perform in predicting U.S. GDP growth, it is paramount
to benchmark the forecasting results against more commonly applied forecasting tools from the field of
econometrics. Only in this way it is possible to judge whether machine learning can contribute or even
outperform more standard methods.

Generally, econometric time series models represent stochastic processes while machine learning methods
are more of an algorithmic nature. Comparing the probabilistic data modeling approach common in
econometrics with the algorithmic approach common in machine learning, Breiman (2001b) speaks of
two different ‘cultures’ which distinguish one from another in several dimensions. Outlining how these
two cultures differ is important to understand the reason why machine learning can be useful for macroe-
conomic forecasting. Some of these dimensions in which traditional econometric models (as described in
the following section) differ from machine learning methods (as described in section 3.3) are uncertainty,
structure and objective (Harrell, 2019).

1. Uncertainty: Econometric models explicitly take uncertainty into account by assuming some form
of probabilistic distribution for the residual term. This results in stochastic data models that
allow to conduct both point forecasts as well interval forecasts, enabling the researcher to draw
conclusions about the uncertainty of a forecasted value. Machine learning models, in contrast, are
non-probabilistic and do not model uncertainty explicitly.

2. Structure: Econometricians select a parametric model which they believe describes the data gen-
erating process of the underlying data best. Typically, they assume additivity of predictor effects
when specifying the model. Machine learning practitioners do not impose any preconceived struc-
ture on data but rather implement an algorithm which learns the relation between target variable
and predictors in a data-driven manner (in contrast to a model-driven approach).

3. Objective: Machine learning algorithms are designed to achieve a high predictive accuracy in the
first place. The focus in econometric models lies more on drawing conclusions from estimated model
parameters. Certainly, it depends on the exact application which of the two, predictive accuracy
or interpretability, is more important, but the former has usually an edge over the latter when it
comes to forecasting.

The above mentioned differences between the two cultures of statistical modeling have two important
consequences. First, if the econometric model imposed by the researcher is a poor description of how the
data is generated, the conclusion drawn from the model estimates are inherently wrong. This problem is
not faced by machine learning methods as they do not impose any structural model on the data. Second,
machine learning techniques are often labeled as ‘black box’ (Breiman, 2001b, p. 199) methods which
allow little to no room of interpretation with regards to the relation between the target variable and
its predictors.5 Econometric models are designed in a way that allows structural interpretation of the
relationship between target and features given the data model is specified correctly.

It is important to have these characteristics in mind when applying different forecasting methods and
especially when comparing their performance as done in this paper. The following highlights specific
aspects of the forecasting strategy in more detail.

5Breiman (2001b), for instance, admits the black box nature of machine learning methods, but at the same time argues
that accurate information and not interpretability matters most. This is a controversial statement as it strongly depends
on the context and the research question how important the interpretation of the underlying methodology is.
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3.1.1 Stationarity

Stationarity is an important concept in the context of producing forecasts based on time series models.
Stationarity requires that the statistical properties of the process generating the time series do not change
over time. This does not mean that the time series itself does not vary over time (otherwise there would
be no reason to produce forecasts), but that the way how future realizations are generated does not
change in the course of time (Palachy, 2019). Intuitively, it is not possible to forecast a time series if the
data generating process according to which the series is distributed is time-dependent. In its weak form,
stationary imposes that mean, variance and covariance of the time series are finite and time-independent.
This assumption implies sufficient stability in the statistical properties of the time series which allows
to model the data generating process. Extrapolating such a time series model then allows to produce
multi-step ahead forecasts.

In contrast to time series models, machine learning methods do not model the data generating process
(Harrell, 2019), but rather try to learn patterns encrypted in the data it is trained on. The primary goal
of machine learning is to develop a model that generalizes beyond the data it has been trained on. In
a time series context, this imposes restrictions on the data which are closely related to the concept of
stationarity. While machine learning methods do not aim at modeling the data generating process itself,
they clearly demand that the data generating process in the training set does not differ from the one in the
test set. In a time series task, the training set needs to strictly precede the test set requiring some degree
of stability in the way the series are generated. Only then machine learning methods can learn patterns
on the training data which are useful for predictions on the test set. The easiest way to think about the
necessity of stationarity-related restrictions in a machine learning context is to imagine a non-stationary
trending time series. If realizations beyond the training data take on values which are far off the values
the algorithm has seen during training, the machine learning method will clearly be unable to produce ac-
curate predictions. A trending series which is non-stationary due to its time-dependent mean will exactly
cause such a scenario. In this respect, stationarity is also an important concept in machine learning setups
as it ensures that the data generating process does not fundamentally change beyond training data. This
becomes particularly problematic in terms of trending series when the level of data changes systematically.

Given these considerations, it is crucial to turn non-stationary time series into stationary ones before
feeding them into the models. The maintainers of FRED-QD suggest transformation codes applica-
ble to the data to obtain stationary series (McCracken & Ng, 2016; J. Stock & Watson, 2012). The
transformations can be roughly categorized. Real activity variables are recommended to be converted
to quarterly growth rates (first differences of logs), prices and wages to quarterly changes of quarterly
inflation (second differences of logs), interest rates to simple changes (first differences), and interest rate
spreads are suggested to be kept in levels (J. Stock & Watson, 2012). The transformation recommen-
dations strongly rely on differencing of the time series which is a common tool to turn non-stationary
series into stationary ones. This paper follows the recommended transformations as first step to induce
stationarity. After transforming the series, versions of the Augmented Dickey-Fuller (ADF) Test and of
the Kwiatkowski-Phillips-Schmidt-Shin (KPSS) Test are conducted to test whether the transformations
have led to stationary series. In a first ADF-Test, the existence of a unit root is tested against a sta-
tionary Autoregressive process without intercept. A second specification of the ADF-Test incorporates
an intercept term and tests again the existence of a Random Walk against a stationary AR process with
constant. The third version of the ADF-Test incorporates both intercept term and a linear trend term. It
then tests a stochastic trend, i.e. a Random Walk with drift, against a deterministic trend inducing trend
stationarity. Since ADF-Tests are known to suffer low power (Verbeek, 2004), two different KPSS-Tests,
one with a null hypothesis of level stationarity and the other one with a H0 of trend stationarity, are
conducted to validate the testing results. The number of lags in the stationarity tests is determined by
the Bayesian Information Criterion (BIC). If any of the tests indicates that the respective series, despite
its transformation, is still non-stationary at the 5% level, further visual inspections are conducted and
alternative transformations are tested. The final transformations can be found in the third column of
table 9 in the appendix.

3.1.2 Resampling Strategy

In this paper, nested cross-validation as model selection and model validation strategy is used. Basically,
nested cross-validation is a combination of two loops of cross-validation. In an inner loop, cross-validation
is used for calibrating the model’s hyperparameters and features. In other words, the inner loop is re-
sponsible for tuning the machine learning models. Given the best set of hyperparameters and features
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obtained from the inner loop, the outer loop uses cross-validation as a tool for evaluating the model’s
generalization performance on unseen data. Consequently, the inner loop aims at model building by
means of parameter tuning and feature selection while the outer loop assesses the model’s generalization
performance (Varma & Simon, 2006). Generally, nested cross-validation requires three-way partitioning
of the data into three independent sets: training, validation and test set. Figure 3 illustrates this typical
machine learning workflow.

Figure 3: Machine Learning Framework
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Note: Flowchart displays typical workflow in setting up a machine learning model. Nodes on the left highlighted in light
blue indicate the tuning procedure on the training data (inner loop). Given the tuned model, the final performance of the
model is assessed on the out-of-sample test set as displayed by the nodes in dark blue (outer loop). Flowchart is adapted
from Pedregosa et al. (2019).

The outer loop first splits the data into a training set on the one hand and a test set on the other
hand. The test set is strictly withheld from the model building process and only serves for assessing the
model’s generalization performance. Therefore, the test set is also referred to as out-of-sample-set. The
assessment of a model’s generalization capability using out-of-sample data is vital in every machine learn-
ing setting since most machine learning techniques tend to overfit the data they are trained on (James,
Witten, Hastie, & Tibshirani, 2013). This means that fitting a model on training data tend to result
in too complex models which are not capable of differentiating signal and noise in the underlying data.6

As a consequence, their performance on training data tends to be very good but once applied on un-
seen data, they perform poorly because of their incapability of recognizing the signal entailed in new data.

The inner loop, responsible for model building, iteratively splits the overall training set into two further
subsets - one called training subset and the other one called validation set. Similar to the test set in the
outer loop, the validation set in the inner loop is kept aside when training the model. Using different
hypeparameter constellations the model is then trained on the training subset and the performance of all
different constellations is assessed on the left-out validation set. Clearly, this is computationally expensive
as the set of possible hyperparameter cofigurations is likely to be infinite. Different strategies exist to
approximate the best set of hyperparameters. Section 3.1.3 explains the exact tuning strategy used for
this purpose. Once the best hyperparameter configuration is found in the inner loop, the model is trained
on the full training set, and the tuned model’s errors on the test set are recorded in the outer loop. The
errors from the outer loop are then aggregated by specific error measures which are discussed in more
detail in section 3.1.4.

Generally, the models in this paper are used to make predictions in a time series context. This means that
predictions must be understood as forecasts where the time ordering of data plays a crucial role. Partic-
ularly, the partitioning of data during cross-validation requires special attention. K-fold cross-validation
as one of the most widely used partitioning strategies (Bergmeir, Hyndman, & Koo, 2018) splits the data
randomly into k independent train and test sets (train and validation subsets in the inner loop). However,

6The same can be true for econometric time series models. Allowing too many lags in the model may yield good in-sample
results but poor out-of-sample forecasts. For time series models, instead of cross-validation, information theoretic criteria
are used in order to find the best lag structure. See also table 1 for more information.
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for time series data this is no valid approach as the randomization does not preserve the time ordering of
the underlying data.7 Dividing data randomly into a training and test set bears the risk that realizations
in the test set are older than the observations used for training the forecasting model. This is invalid from
a forecasting perspective, since it implies that the past could be predicted by the future. For this reason,
a special form of blocked cross-validation which splits the data in chronological blocks, strictly preserving
the time structure, is applied in both loops. The partitioning strategy in blocked cross-validation for
time series data respects that the test set (validation set) is always ahead of the training set (training
subset). In other words, the test set needs to be always the last block in the cross-validation procedure.
Unlike k-fold cross-validation which makes full use of the available data as each fold is used both for
model training and model testing, in blocked cross-validation for time series data the latest block of data
can never be used for training due to the time dependent logic of forecasting. This means that blocked
cross-validation can never make use of the full data as efficiently as k-fold cross-validation does. However,
it preserves the natural dependency of time series data, acknowledging that the future can only depend
on the past and not vice versa (Bergmeir & Beńıtez, 2012).

The forecasting strategy in this paper conducts one-quarter ahead as well as one-year ahead forecasts
following the rolling-origin-recalibration procedure described in Tashman (2000). Tashman (2000) defines
the forecasting origin as the last available value from which on forecasting is performed. With a rolling
origin strategy observations from the test set sequentially move to the training data. In each iteration
step, the model is recalibrated according to the new (by one observation enlarged) training data.8 One
can think of this approach as an expanding-window strategy where the training data grows by one obser-
vation in each validation step. Alternatively, one could also use a rolling-window-recalibration strategy
where, similar to the rolling-origin-recalibration procedure, data from the test set is sequentially trans-
ferred to the training set but the size of training data is kept constant by dropping one observation from
the beginning of the series. This alternative recalibration strategy does not make a substantial difference
in this paper’s application. Figure 4 illustrates the cross-validation strategy applicable to time series data.

Figure 4: Time Series Resampling
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Note: Figure shows the overall split into training and test data at the top. Training observations are shown as green dots,
test observations as red dots. The split strictly obeys the time ordering and ensures that the training set precedes the test
set. In the inner loop, training data is further split into blocks of training subsets and blocks of validation sets. Using an
expanding-window strategy, model estimation with varying hyperparameter constellations is done on each of the training
subsets. The performance of the forecasts (light green points) of all constellations is then compared with actual realization.
The best performing hyperparameter combination is then used in the outer loop. Given the best hyperparameters, the
tuned model’s generalization performance is assessed on the training data. Using again an expanding-window strategy,
the forecasting performance is assessed by comparing the forecasted value (light red dots) with the actual realization.
Visualization is based on one-quarter ahead forecasts and is adapted from Hyndman (2016).

7See Bergmeir et al. (2018) for exceptions where k-fold cross-validation can still be applied to time series data.
8Note that in the inner loop cross-validation is not designed by single steps but by a larger step size in order to lower

computational expense. Nonetheless, the time ordering is strictly preserved using blocked cross-validation.
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3.1.3 Tuning Strategy

Part of the model selection process is the tuning of hyperparameters. In machine learning, hyperparam-
eters, also referred to as free parameters, are not learned during training but fixed before the training
process begins. While the optimal value of learner parameters results from the underlying optimization
problem of the algorithm, the optimal set of hyperparameters needs to be found by testing the perfor-
mance of different hyperparameter constellations on the independent validation sets. This process of
testing different parameters to find the optimal hyperparameter combination is called hyperparameter
tuning. The number and the nature of hyperparameters and learner parameters depend on the learning
algorithm. For example, in Support Vector Regression using a sigmoid kernel there are four hyperparam-
eters: ε which determines the width of the ε-tube within which deviations from the regression function
are allowed, the cost parameter C which steers the trade off between model complexity and the degree to
which deviations larger than ε are permitted as well as two further kernel parameters γ and c. The dual
variables αi and α∗i as well as the intercept parameter b, in contrast, pose learner parameters in SVR
which are learned during the training phase.9

When tuning an algorithm’s hyperparameters, one needs to define a suitable search space S for each
parameter first. The optimal value of a hyperparameter for a given learning algorithm highly depends
on the underlying data set and the prediction task. Generally, it is little known about where to search
for the optimal value of a parameter in advance (Bergstra & Bengio, 2012). Therefore, one usually needs
to choose a relatively large search space to start the tuning procedure. Different tuning methods exist
to find or approximate the optimal set of free parameters. A widely used method is grid search which
exhaustively considers all possible hyperparameter combinations given the predefined search spaces. The
advantage of grid search is that it always finds the optimal parameter constellation. However, the down-
side of grid search is that with large search spaces this becomes computationally highly expensive as grid
search tests every single combination. In fact, the number of combinations grows overproportionally with
the number of free parameters. In the above example, the number of trials conducted by grid search equals
(Ssize)

4 with Ssize as the size of the search space for each hyperparameter (here assumed to be equal for
all four parameters). This over-proportional growth in the number of hyperparameters makes grid search
suffering the curse of dimensionality (Bergstra & Bengio, 2012). Grid search is therefore highly unsuitable
for searching large grids with many parameters since the computational expense becomes excessively large.

Given limited computational resources, this paper follows a two stage tuning strategy. In a first stage of
tuning, it conducts a randomized search on the initially wide search spaces. Random search picks hyper-
paramter combinations randomly from the predefined search grid. The advantage of random search is that
the user controls the number of trials by providing a maximum number of randomly chosen parameter
constellations whose performance is tested. Consequently, the user can actively steer the computational
expense. In contrast to grid search, random search usually does not find the optimal hyperparameter
constellation but gets close enough with much lesser iterations (Bergstra & Bengio, 2012). In this sense,
random search does not suffer the curse of dimensionality nor does it spend excessive time searching in ex
ante unknown low interest areas where hyperparameter combinations perform poorly.10 In this paper, the
number of trials is limited to 100. With the random search results of first-stage tuning, the search space
of each hyperparameter is narrowed in the following way. First, the top 30% parameter configurations are
extracted from the random search results. From these high performing hyperparameter constellations,
the (reasonably rounded) first quartile and third quartile of each hyperparameter form the basis of the
new lower and upper bounds for the search spaces in the second stage of tuning.11 This approach allows
to narrow down the initially broad search spaces to regions where parameters perform well. The narrowed
search spaces are searched again either by random search or by grid search. An overview of the initial
search spaces and the narrowed search spaces in second-stage finetuning for each tuning parameter as
well as information on the search methods can be found in table 1.

3.1.4 Forecast Accuracy Measurement

A further important aspect of a sound forecasting strategy lies in the principles of calculating the aggregate
forecasting accuracy. Generally, accuracy measurements can be assigned to one of the following five
groups: (i) scale-dependent measures, (ii) measures based on percentage errors, (iii) measures based on
relative errors, (iv) relative measures and (v) measures based on scaled errors (Hyndman & Koehler,

9See section 3.3.3 for a detailed explanation of SVR.
10Bergstra and Bengio (2012) provide further details as to why random search is more efficient than grid search.
11It is ensured that the very best performing hyperparameter constellation from first-stage tuning is incorporated into

the new bounds.
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Table 1: Hyperparameter Search Spaces

Model Hyperparameter
First-stage tuning Second-stage finetuning

search lower upper search lower upper
method bound bound method bound bound

ARIMA p IC 0 10
q IC 0 10

VAR p IC 0 10

FAVAR V CV (g.s.) 1 10
p IC 0 10

RF M CV (r.s.) 101 103 CV (g.s.) 50 550
dtry CV (r.s.) 21 210 CV (g.s.) 85 185
nodemin CV (r.s.) 1 95 CV (g.s.) 85 95

GB M CV (r.s.) 101 103 CV (g.s.) 500 1000
ν CV (r.s.) 10−3 10−1 CV (g.s.) 0.01 0.06
depthmax CV (r.s.) 1 10 CV (g.s.) 9 10

SVR C CV (r.s.) 10−2 104 CV (r.s.) 0.06 0.36
ε CV (r.s.) 10−5 100 CV (r.s.) 0.0002 0.068

Note: In the column search method, the following abbreviations are used (i) IC: information criterion based parameter se-
lection, (ii) CV (g.s.): parameter selection via a cross validated grid search, (iii) CV (r.s.): parameter selection via a cross
validated randomized search.
In first-stage tuning of RF, the upper bound of dtry equals the total number of features. Note that this corresponds to
Bagging. The lower bound of dtry is calculated as 0.1 · (number of features). The upper bound of nodemin is calculated as
0.5 · (number of training observations). This corresponds to very small trees (possibly stumps with only one binary split).
The lower bound of nodemin is fixed at 1. This results in large trees with some leaf nodes including only one observation.
In first-stage tuning of GB, search spaces mainly mimic ranges used in previous research and recommended by literature
(see James, Witten, Hastie, and Tibshirani (2013) for example).
In SVR polynomial, radial and sigmoid kernels are considered for tuning. Kernel parameters are not tuned but predefined
using reasonable values (w = 3 and γ = (number of features)−1; see kernel definitions in section 4.1). In finetuning, only
the sigmoid kernel as best performing kernel in first-stage tuning is further considered.
More details on the meaning of the individual hyperparameters can be found in the methodology section 3.3.
Second-stage finetuning bounds refer to the models developed for one-quarter ahead forecasts.

2006). While these classes of accuracy measures have very different properties, they all have in common
that they are based on the out-of-sample forecast error. The forecast error as the unpredictable part of
an observation is defined as the difference between the observed true value and its forecast

et = yt − ŷt. (3)

In an extended empirical assessment of annual and quarterly economic time series data, Armstrong and
Collopy (1992) analyzed the suitability of different error measures based on four criteria: (i) reliability, (ii)
construct validity, (iii) sensitivity and (iv) relationship to decisions. Generally, they distinguish between
error measures used for calibrating a model (i.e. tuning the model’s parameters) and error measures to
assess the model’s generalization performance. In the following, the use of specific error measures in this
paper will be justified based on the above mentioned criteria.

For the purpose of model calibration, Armstrong and Collopy (1992) suggest using an error measure that
is primarily characterized by a high degree of sensitivity. Sensitivity in this context means that the error
measure should clearly indicate the impact on accuracy if one of the model’s hyperparameters is changed.
Moreover, sensitivity is related to how susceptible a measure reacts to outliers. It is important to mention
that this is not necessarily desirable for error measures in the context of parameter tuning (Armstrong,
2001). In fact, Armstrong (2001) argues that low sensitivity to outliers is not desirable if the focus of the
forecasting task lies on predicting abnormal cases such as wars, floods or hurricanes. This paper focuses
on how well forecasting methods perform in times of economic crises. In a statistical sense, the effects of
a crisis on an error measure can be seen as similar to the effects caused by outliers. Crises can be placed
into the same group of abnormal cases which is why the building process of the model should result in
parameters that allow the model to capture such cases. In other words, it is reasonable to choose an error
measure which is sensitive to anomalies in the underlying data when tuning its hyperparameters. Error
measures characterized by a high degree of sensitivity are the scale-dependent Root Mean Squared Error
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(RMSE)

RMSE =
√
mean(e2

t ) (4)

and the Mean Absolute Percentage Error (MAPE) which is based on percentage errors

MAPE = mean(|pt|) (5)

with pt = 100 etyt (Armstrong & Collopy, 1992).

RMSE has the advantage of being on the same scale as the target variable which makes it easy to under-
stand and interpret. At the same time, this is the deficiency of the RMSE as it does not allow to compare
forecast performances across series with different scales (Hyndman & Koehler, 2006). The solution to
this scale dependency are error measures based on percentage errors, such as the MAPE. However, the
problem of MAPE is that it puts stronger weight on positive errors than on negative errors with negative
errors being bound to a maximum of 100%. Since for the tuning of parameters the scale dependency
of RMSE is irrelevant (tuning does not involve comparing forecast errors across different series), model
calibration on the training set is based on RMSE in this paper. The asymmetric penalty of positive and
negative errors in case of MAPE makes it an unsuitable candidate for this purpose.

For the assessment of generalization performance and the related comparison among forecasting models,
Armstrong and Collopy (1992) highlight the importance of reliability, construct validity and relationship
to decision making as main criteria for a sound error measure selection. Reliability means that the
accuracy measure should rank different forecasting methods similarly if applied to different subsamples
of the data. Construct validity assesses whether an error measure is in line with rankings among different
forecasting methods produced by other error measures. This means that a valid error measure would
rank the performance of opposing forecasting methods not entirely different as compared to other error
measures. Ultimately, the relationship to decision making criteria favors measures which can be easily
interpreted and which allow to draw direct conclusions for practitioners. Usually, error measures on the
same scale as the target variable can be interpreted most easily and are thus most suitable for decision
making (Armstrong & Collopy, 1992). According to the empirical study of Armstrong and Collopy
(1992), none of the conventional error measures fulfills all of these criteria simultaneously. Nonetheless,
the authors recommend the use of Median Relative Absolute Error (MdRAE) which, despite of being at
a different scale as the target variable, is reliable and highly correlates with the rankings produced by
other measures - a strong hint for construct validity. MdRAE is a measure based on relative errors. It is
calculated by dividing each error by the error produced by another benchmark model

MdRAE = median(|rt|) (6)

with rt = et
ebt

. Note that ebt is the forecast error obtained from the benchmark model.

Besides the MdRAE which is based on relative errors, one can also assess generalization performance
by means of relative measures (Hyndman & Koehler, 2006). For instance, if RMSEb is the Root Mean
Squared Error obtained from a benchmark model such as the Random Walk model, then the Relative
RMSE (RelRMSE) is defined as

RelRMSE =
RMSE

RMSEb
. (7)

The RelRMSE can be easily interpreted. It tells by how many percent the proposed model is better
or worse compared to the benchmark model. If RelRMSE is greater than one, it performs worse than
the benchmark model, if it is smaller than one, it performs better. For the assessment of generalization
performance, both MdRAE and RelRMSE are reported in this paper.

Moreover, this paper uses an extension of the Diebold-Marino (DM) Test in order to assess whether the
difference in predictive accuracy between two models is statistically significant (Diebold & Mariano, 2002;
Harvey, Leybourne, & Newbold, 1997). The test calculates the error differential series of the forecasts
from the benchmark model and the alternative model. Under the null hypothesis that the two models have
the same level of accuracy, the DM-Test statistic is asymptotically normal. The alternative hypothesis
is that the accuracy between both models is significantly different. This allows to evaluate whether
differences in the error measurements resulting from two different models are statistically significant.
Detailed results of the DM-Test can be found in figure 8 of section 4.2.1.
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3.2 Benchmark Econometric Models

This section introduces the basic concept of three time series models commonly used in macroeconomic
forecasting. The models comprise an univariate Autoregressive model, Vector Autoregressive models and
Factor-Augmented Vector Autoregressive models. The three types of models act on very different infor-
mation sets and serve as benchmarking models for the machine learning methods.

3.2.1 Univariate Autoregressive Model

One of the simplest approaches in time series modeling is to exploit the target series’ autocorrelative
structure in order to make predictions of the series’ future realizations. This means one analyzes how
current realizations of the target series are related to its past realizations (Verbeek, 2004). The most
prominent model of this univariate approach is known as Autoregressive Integrated Moving Average
model. The formal introduction of ARIMA models goes back to Box and Jenkins (1970). Their influential
work in the field of time series analysis, known as Box-Jenkins modeling, describes an iterative three
stage procedure. Their framework originally comprises model selection, parameter estimation and model
checking (Box, Jenkins, Reinsel, & Ljung, 2016). Hyndman and Athanasopoulos (2018) extend the Box-
Jenkins framework to a seven-step approach including (i) data visualization and outlier detection, (ii)
data transformation to stabilize variance, (iii) differencing to obtain stationary series, (iv) examination
of Autocorrelation Function (ACF) and Partial Autocorrelation Function (PACF), (v) order selection
using the corrected Akaike Information Criterion, (vi) testing residuals for white noise and (vii) the
calculation of forecasts with the final model. This paper closely follows this seven-step approach.12

While Autoregressive Moving Average (ARMA) models combine Autoregressive and Moving Average
(MA) time series components, ARIMA additionally includes differencing of the time series as part of the
model building process. Therefore, ARIMA models have, besides the AR order p and the MA order q, a
third parameter which describes the order of differencing d. As described in section, 3.1.1 differencing is
commonly used to stabilize the mean in order to obtain a stationary series (Hyndman & Athanasopoulos,
2018). In this paper, transformation of data with the goal to obtain stationary series is part of the data
preparation process and is conducted before model building. Therefore, this paper focuses on ARMA
models for linear univariate time series modeling. An ARMA(p, q) model is defined as follows

yt = θ1yt−1 + . . .+ θpyt−p + εt + φ1εt−1 + . . .+ φqεt−q (8)

with εt as white noise component with zero mean and constant variance, i.e. εt ∼WN(0, σ2).13

It becomes obvious that an ARMA(p, q) model uses both lagged values of the target variable and lagged
variables of the white noise error term as predictors for the current realization of the target. Lagged val-
ues of the target variable form the AR part of the model; the error term and lagged realizations thereof
build the MA part.

Alternatively, ARMA(p, q) models can be represented using the lag operator

θ(L)yt = φ(L)εt (9)

with lag operater Lpyt = yt−p and lag polynomial θ(L) = 1− θ1L− . . .− θpLp.

Given that the AR polynomial is invertible which it is if, and only if, the the target series is stationary,
(Verbeek, 2004) equation (9) can be written as

yt = θ(L)−1φ(L)εt. (10)

Assuming normality of εt the p + q parameters of the above ARMA specification are estimated using
Maximum Likelihood (Hyndman & Khandakar, 2008). Given the estimated parameters and using all
information available today, it is possible to produce forecasts by means of ARMA models. With the
Mean Squared Error (MSE) as loss function, the expected value conditioned on today’s set of information
serves as optimal predictor of future realizations of yt. A forecast of the target variable in t + h can be
expressed in the following way

ŷt+h = f(yt, . . . , yt−p+h; Θ̂) = E [yt+h|It] (11)

12Note that steps (i) - (iii) are fundamental to all models and therefore part of the general data preparation as described
in section 3.1.

13Note that in this section yt := yt − µ is the demeaned series of GDP growth with µ as the mean of the series yt. This
representation is chosen for notational convenience. The final model includes an explicit constant.
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with information set It = {y1, . . . , yt, ε1, . . . , εt}.

The one-step ahead forecast for an ARMA(p, q) model is calculated as follows:

ŷt+1 = θ̂1yt + . . .+ θ̂pyt−p+1 + E [εt+1]︸ ︷︷ ︸
= 0

+φ̂1εt + . . .+ φ̂qεt−q+1. (12)

A point forecast in t+ h is calculated recursively using the forecasts from periods t+ 1, . . . , t+ h− 1.

ŷt+h = θ̂1ŷt+h−1 + . . .+ θ̂h−1ŷt+1 + . . .+ θ̂pyt−p+h + E [εt+h]︸ ︷︷ ︸
= 0

+ . . .+ φ̂h−1 E [εt+1]︸ ︷︷ ︸
= 0

+ . . .+ φ̂qεt−q+h

(13)

assuming that p and q are larger than h.

Despite the simplicity of ARMA models which only rely on the autocorrelation in the target variable and
its error term, they tend to perform remarkably well in empirical economic studies compared to more
elaborated structural models which incorporate the history of other economic variables as well (Verbeek,
2004). Therefore, ARMA models pose an important benchmark when comparing the forecasting accuracy
of different methods. Another important benchmarking model in time series forecasts, the Random Walk
model, can be derived from the above ARMA model.

Random Walk

From the ARMA family of models, one can obtain a special time series model which often serves as näıve
benchmark in macroeconomic forecasting tasks (Fildes & Stekler, 2002). ARMA(1, 0) with θ1 = 1 is
defined as

yt = yt−1 + εt (14)

and forms a Random Walk (RW) model. In a RW model, a forecast simply equals the current observation
irrespective of the forecasting horizon:

ŷt+h = yt ∀ h ≥ 1. (15)

According to former editor-in-chief of the International Journal of Forecasting, Rob J Hyndman, a policy
of the journal is that every submitted method must be compared to standard benchmarks such as the
RW model before the paper will even be considered for publication (Hyndman, 2010). In light of this
minimum requirement, this paper compares forecasting performance among others against the forecasts
obtained from a RW model.

3.2.2 Vector Autoregressive Model

A natural extension to univariate time series models that only depend on the history of the target variable
are multivariate time series models which allow to model the relationship between several macroeconomic
time series. Vector Autoregressive models pose a prominent multivariate extension of the univariate
ARIMA model. From a forecasting perspective, the inclusion of other macroeconomic aggregates into
the model means that the history of variables other than the target variable plays a role in producing
forecasts for the target variable. Consequently, this approach operates on an extended set of information,
possibly allowing to produce more accurate forecasts of the target variable (Verbeek, 2004). Moreover,
VAR models allow to generate forecasts for all variables incorporated into the model. This is true because
vector autoregressions are designed in a way that all variables are treated symmetrically. Changes in one
variable affect all other variables in the system. So VAR models release the researcher from distinguishing
between endogenous and exogenous variables since all variables are treated as endogenous (Verbeek, 2004).
This is useful when the the interdependence of variables is a priori unknown as it is often the case in
forecasting tasks with many possible interactions such as the one in this paper. A VAR(p) model with
K endogenous variables and p lags is defined as follows

yt = a0 +A1yt−1 + . . .+Apyt−p + εt (16)

with yt = (y1t, . . . , ykt, . . . , yKt) as a vector of K preselected time series which enter the model, a0

as vector of intercept terms, Aj as (K × K) coefficient matrix for all j = 1, . . . , p lags and εt as K-
dimensional serially uncorrelated white noise process with E(εt) = 0 and contemporaneous covariance
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matrix E(εtε
′
t) = Σε. Note that contemporaneous correlations among the white noise terms are allowed.

In lag operator notation, the VAR(p) can be written as

A(L)yt = a0 + εt (17)

with A(L) = IK +A1L+ . . .+ApL
p.

Forecasting with VAR models works analogously to ARMA models. Forecasting the multivariate model
in t+ h can be expressed in the following way

ŷt+h = f(yt, . . . ,yt−p+1; Θ̂) = E [yt+h|It] (18)

with information set It = {y1, . . . ,yt, ε1, . . . , εt}. Clearly, the information set in the VAR case is much
richer as compared to the univariate ARIMA case. It comprises the complete history of all variables
included in the vector yt while the univariate model operates on the information entailed only in the
history of the target variable.

The one-step ahead forecast for a VAR(p) model is obtained as follows:14

ŷt+1 = Â1yt + . . .+ Âpyt−p+1 + E [εt+1]︸ ︷︷ ︸
= 0

. (19)

A forecast in t+ h is calculated recursively using the forecasts from periods t+ 1, . . . , t+ h− 1

ŷt+h = Â1ŷt+h−1 + . . .+ Âh−1ŷt+1 + . . .+ Âpyt−p+1 + E [εt+h]︸ ︷︷ ︸
= 0

(20)

assuming that p is larger than h.

3.2.3 Factor-Augmented Vector Autoregressive Model

Macroeconomic forecasting by means of factor models has been first applied by J. H. Stock and Watson
(2002). They introduced the idea to tackle high dimensional data available for forecasting by means of
a factor analysis which aims at compressing the high dimensional information contained in large feature
spaces to a much smaller dimension. Their approach describes a two-step procedure where in the first
step of the forecasting task the information of all possible predictors is pooled and only a handful of
final predictors, i.e. the factors, are constructed from this pooled set of information (J. H. Stock &
Watson, 2002). This approach allows to reduce the dimension of the feature space while still operating
on all the information entailed in it. Unlike VAR models that require judgemental feature selection
prior to estimating the model, the information set in factor models spans the complete feature space
It = {y1, . . . , yt,x1, . . . ,xt, ε1, . . . , εt}. This means that forecasting by factors is not a feature selection
tool but rather a way to construct a limited number of final factors as linear combinations of all D original
features (James et al., 2013). In this sense, factor models are the first class of models introduced in this
paper which can inherently cope with the high dimensional feature space of 210 distinct macroeconomic
time series. In a second step of building a factor model, the estimated factors enter a standard VAR model
which can then be used for forecasting GDP. In their benchmark paper, J. H. Stock and Watson (2002)
do not forecast by means of VAR models but rather produce forecasts by regressing a target variable
on the lags of the factors and the lags of the target variable itself which they refer to as dynamic factor
model. This paper follows the approach in Bernanke, Boivin, and Eliasz (2005) who refine the dynamic
factor model to the context of vector autoregressions. In fact, the terminology Factor-Augmented Vector
Autoregressive appears in their paper for the first time.

The FAVAR approach is based on a VAR model in both the scalar target variable yt and the V ×1 vector
of unobserved factors, ft, where V < D[

ft
yt

]
= A(L)

[
ft−1

yt−1

]
+ εt. (21)

Note that A(L) is a conformable lag polynomial of finite order p − 1 and εt is a serially uncorrelated
white noise process with E(εt) = 0 and contemporaneous covariance matrix E(εtε

′
t) = Σε.

14The subsequent representations are based on the demeaned series yt := yt − a0.
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Clearly, equation (21) cannot be estimated directly since the latent factors cannot be observed. However,
it is assumed that the factors can be constructed from the information contained in the feature space
(Bernanke et al., 2005). More precisely, it is assumed that the high dimensional and high informational
time series xt are related to the latent factors ft in the following form:15

xt = Λft + vt. (22)

Λ is a D × V matrix of factor loadings and vt has zero mean E(vt) = 0 and is assumed to be either
uncorrelated or alternatively exhibits a small amount of contemporaneous correlation.16

In this paper, Principal Component Analysis (PCA) is used to extract the V factors from the D × T
feature space X. The core idea of PCA is to reduce dimension of the feature space while retaining as
much as possible of the variation present in the features. This is achieved by reducing the high dimen-
sional feature space to only those directions with the most variability (James et al., 2013). One thereby
transforms the feature space to a new set of uncorrelated predictors, i.e. the principal components, ct.
These are sorted such that the first few capture most of the variation present in all of the original vari-
ables x1, . . . , xD (Dubey, 2018). At the same time, it is assumed that the directions in which the original
variables show most variation are directions associated with the target variable (James et al., 2013).

This paper extracts the principal components from the feature space in the following way. First, the
correlation matrix, Corr(x), of the feature space is calculated. For the correlation matrix, one calculates
the eigenvectors of the V largest eigenvalues. These eigenvectors form the columns of the loading matrix
whereas the first column corresponds to the largest eigenvalue, the second column to the second largest
eigenvector and so forth. The eigenvectors that belong to the V largest eigenvalues constitute the loading
matrix. The principal components are then calculated as linear combinations of the original features with
the factor loadings as weights

x = cΛ′

c = xΛ
(23)

with Λ′Λ = I.

One of the key issues in PCA is to determine the number of principal components. The maximum number
of components V is capped at min(T − 1, D). Clearly, it is desirable to extract a number of components
much smaller than the number of original variables in the feature space in order to achieve a substantial
dimension reduction. This implies V � D. Given the optimal number of principal components, they are
used as reasonable proxies for the unobservable factors. Thus, the final factor estimate, f̃t, equals the
principal components

f̃t = ct. (24)

Ultimately, a VAR in yt and f̃t is estimated which is then used to produce forecasts in yt[ ̂̃
f t+1

ŷt+1

]
= f(f̃t, . . . , f̃t−p, yt, . . . , yt−p; Θ̂) = Â(L)

[
f̃t−1

yt−1

]
. (25)

In the FAVAR setup described in this section, a technique has been introduced which ‘officially’ belongs
to the field of machine learning. PCA is an unsupervised learning method (see for example Hastie,
Tibshirani, and Friedman (2009), James et al. (2013)) which, in the context of this paper, is used
to detect similarities among the many features in the high dimensional feature space and, by means
of these similarities, aims at reducing the dimension of variables finally entering into the forecasting
model. Nonetheless, the final forecasting model is a linear and additive time series model not different
to a classical vector autoregression which is why the FAVAR framework is placed into the category of
econometric models contrary to the more advanced supervised learning models which will be introduced
in the subsequent section.

15Note that Bernanke et al. (2005) define factors to be forces which affect many economic variables including the observable
target variable(s). The feature space is considered as a collection of ‘informational’ economic time series which allow to
infer something about the factors. This assumption requires them to include the target variable(s) into equation (22) in
order to obtain net effects of both the factors and the target variable(s) in the VAR equation (21) which is important
for the structural analysis of the model. This paper refrains from such economic considerations as well as from structural
interpretations. Instead, it takes a pure statistical approach which aims at effectively deriving a low dimensional set of
features from the high dimensional feature space (not including the target variable) by means of PCA.

16See J. H. Stock and Watson (2002) for a discussion of the restrictions on cross-correlation in vt under principal component
estimation.
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3.3 Machine Learning Algorithms

Most traditional forecasting in economic research has relied on probabilistic time series models of the kind
introduced in the previous section. The latest volumes of the Oxford Handbook of Economic Forecasting
as well as the Handbook of Economic Forecasting, both collections of state-of-the art surveys in the sphere
of economic forecasting, published in 2011 and 2013, respectively, cover exclusively such models. While
the former acknowledges the rise of richer and larger data sets and the availability of improved computa-
tional power in the field of economic research (Clements & Hendry, 2011), both handbooks’ methodology
section does not mention techniques related to machine learning but rather focuses on VAR, DSGE and
factor modeling. Only more recently, economists have started to promote the usage of machine learning
approaches to tackle economic forecasting issues as suggested by the literature review in section 1.2.

What follows in this section is an extension of the econometric forecasting toolbox by algorithmic ap-
proaches which are nowadays typically labeled as machine learning. There are several reasons why
macroeconomic forecasting by means of machine learning algorithms offers promising extensions to more
traditional time series models from the field of econometrics:

1. Existing macroeconomic forecasting models fail to yield accurate predictions in times of crisis. The
failure of econometric models, especially in times of recession, poses the prime motivation to use
more sophisticated machine learning methods for predicting economic activity.

2. Times of economic turmoil are characterized by highly nonlinear interactions among key macroeco-
nomic variables. Clearly, if variables are related in a nonlinear fashion, any linear forecasting model
tends to perform poorly. Machine learning methods are designed to capture nonlinearities and thus
pose a promising class of models that potentially yield more accurate forecasts in economic crises.17

3. The doctrine in econometrics focuses on in-sample goodness-of-fit measures such as the all too of-
ten reported in-sample R2 (Breiman, 2001b; Varian, 2014). Machine learning, in contrast, typically
assesses model performance based on out-of-sample performance. In forecasting tasks, it is natural
to focus on out-of-sample performance. One normally is interested in what a forecasting model pre-
dicts to happen in the future given data which has not been used to build the model. Consequently,
best practices in machine learning performance assessment fit well in the context of forecasting.

4. In macroeconomic forecasting, one typically faces ‘fat’ data (Varian, 2014) characterized by a large
number of predictors relative to the number of observations. Econometric models run into degrees
of freedom problems or issues concerning overfitting when being confronted with this dimension
of data. Factor analysis, introduced in section 3.2.3, which makes use of unsupervised learning
techniques in order to tackle this problem, is one way to deal with ‘fat’ data. Also, supervised
machine learning can handle large datasets with many variables. This is true because the num-
ber of parameters in machine learning models does not grow with the number of variables taken
into consideration by the model.18 Thus, the information set in all subsequent machine learning
applications comprise the full feature space It = {y1, . . . , yt,x1, . . . ,xt}.

In the following, three specific machine learning models, Support Vector Regression, Random Forest and
Gradient Boosting are explained in greater detail. The author has chosen to implement these models as
they tend to belong to the most widely used group of machine learning methods with most promising
results in different fields of research and business. The subsequent mathematical formulations refrain
from using time indices as these models do not have the time structure of the data inherent. In order
to produce forecasts, all of the models follow a dynamic regression approach with lagged predictors as
right-hand variables. The modeling approach takes on the following form:

yt = f
(
y(t−h), . . . , y(t−h)−p,x(t−h), . . . ,x(t−h)−p; Θ̂

)
. (26)

It is important to mention that with this approach only one-step forecasts can be made. However, the
step size can be altered by the choice of h. A one-quarter ahead forecast, for example, implies h = 1.
A one-year ahead forecast, in turn, necessitates that only variables of at least lag 4 enter the right-hand
side of the model which implies h = 4. Since lags of the variables enter the model as separate features,
each additional lag in the model decreases the dataset by one sample while at the same time increasing
it by D additional features (one lagging variable for each of the D distinct features).

17Clearly, nonlinearity is not exclusive to machine learning methods. There are also nonlinear models in time series
econometrics. See Kock and Teräsvirta (2011) for a review.

18Pure econometric models, in contrast, usually add at least one parameter for each additional variable incorporated into
the model.
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3.3.1 Random Forest

Random Forest is an ensemble learning method which has been formally introduced by Breiman (2001a).
RF is an interesting candidate for the purpose of GDP forecasting as it allows, by means of a variable
importance measure, to analyze the relevance of different features in producing forecasts. In this way, the
algorithm is the first approach in this paper that makes it possible to incorporate all 210 macroeconomic
time series in the task of forecasting GDP growth, while at the same time giving an idea which of these
210 features have especially strong power in predicting future GDP growth. RF belongs to the class of
ensemble methods because it is built from a collection of simple decision trees. Decision trees can be
understood as a series of binary decisions assigning each training period to a final tree leaf. Periods falling
in the same terminal leaf get the same forecasting values assigned while the algorithms is designed in a
way that only periods with similar patterns belong to the same terminal leaves. In a regression context,
decision trees are also referred to as regression trees. In the following the concept of regression trees is
explained in more detail. Finally, the concept is expanded to Random Forests.

Regression Trees

The idea of regression trees can be thought of as a two-step approach. First, the training observations
are split into J non-overlapping regions R1, . . . , RJ by means of the predictor variables x1, . . . , xD.
In a second step, for every region, one makes the same prediction for each variable falling into the
respective region. The prediction of observations falling into region Rj simply equals the mean ŷRj of
the target variable of all observations in Rj . In theory, the regions could have any shape but, for the
sake of interpretability, the regions are restricted to high dimensional rectangles. Mathematically this
translates into an optimization problem which aims at finding the rectangles R1, . . . , RJ which minimize
the Residual Sum of Squares (RSS) loss function (James et al., 2013):

min
R1,...,RJ

=

J∑
j=1

∑
i∈Rj

(yi − ŷRj
)2. (27)

The issue with regard to optimization problem (27) is that it is computationally not feasible to consider
all possible partitions of the feature space into J non-overlapping rectangles. Therefore, one follows a
top-down recursive binary splitting approach (James et al., 2013). Instead of splitting into J regions at
once, this approach sequentially splits the feature space into two new branches. More precisely, when
building a regression tree based on binary splits one starts off with all training observations at the top of
tree, also called the root node. Starting from the root node one splits the data into two branches based on
a specific variable xd from the feature space and a respective splitting point s. The choice of the splitting
variable and the splitting point is based on the improvement in the Residual Sum of Squares resulting
from a further split of the data given the respective splitting variable. This means that the algorithm
compares for each predictor variable (and a set of splitting points in the domain of the predictor) the
RSS before and after the split. The algorithm selects the predictor variable and splitting point which
yields the greatest improvement in RSS. The two resulting child nodes can be defined as follows (Hastie
et al., 2009):

R1(xd, s) = {x|xd ≤ s} (28)

R2(xd, s) = {x|xd > s} . (29)

Given the next optimal predictor variable and its respective optimal splitting point, the two resulting
child nodes are split again into further subbranches leading to a second level of childnodes. This binary
splitting process is continued until a certain stopping criteria is met. Final nodes at the end of the tree are
called leaf nodes. Each leaf node is assigned a prediction value ŷRj

based on the training periods falling
into the respective leaf. With the binary splitting approach, the above optimization problem simplifies
at each split to19

min
xd,s

min
ŷR1

∑
i∈R1(xd,s)

(yi − ŷR1
)2 + min

ŷR2

∑
i∈R2(xd,s)

(yi − ŷR2)2

 . (30)

It can be shown that for any choice of xd and s in the outer minimization, the inner minimization is
solved by exactly the mean value of the target variable of those observations falling into region R1 and

19Note that in the forecasting context of this paper a combination of features and target (xi, yi) corresponds to(
x(t−h), yt

)
.
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R2, respectively (Hastie et al., 2009).

In this paper the stopping criteria signaling that the tree is not supposed to be grown further is the
minimum number of observations in each leaf node, nodemin. This means that the splitting procedure is
stopped once a further binary split would lead to a leaf node including less than nodemin observations.
Note that nodemin is a tunable parameter which steers the size of the tree, i.e. the number of leaf nodes
J . A large value of nodemin leads to rather small trees, while a small value for nodemin leads to larger,
more complex trees. The final regression tree model, partitioning the feature space into J leaf nodes, can
be represented as follows

T (x; Θ) =

J∑
j=1

ŷRj
1(x ∈ Rj). (31)

Ensemble of Regression Trees: Random Forest

Generally, regression trees are known to suffer from high variance. Therefore, applying trees to different
samples of the same data can lead to quite different results (James et al., 2013). A natural way to lower
the variance and thus to increase prediction accuracy of a regression tree is to build a repeated number of
randomized trees and average the resulting predictions. Consequently, the extension of simple regression
trees to Random Forests is no more complicated than averaging the results from M randomized trees

f(x; Θ) =
1

M

M∑
m=1

T (x; Θm) (32)

with Θm = {Rjm, ŷRjm
}Jm1 .

This means that instead of building only one tree, one estimates several distinct trees and averages the
results from all trees for each observation. Generally, the randomization of trees is conducted in two
ways: building trees on different samples of the training data on the one hand and, on the other hand,
considering only a feature subset as splitting candidates at each node.

The first randomization approach uses bootstrapping as resampling method in order to generate different
subsamples of training data. This method is also known as Bagging (James et al., 2013).
A second source of randomization in the process of building trees allows to consider only a random
selection of all predictor variables as possible splitting variables at each split node. This method of
randomization is known as random subspace method and has first been proposed by Ho (1995). The
advantage of random subspacing is that it greatly decorrelates the resulting decision trees. The number
of predictor variables which is randomly sampled at each node is defined as dtry ≤ D. Note that dtry is
another tuning parameter in the RF algorithm.

Breiman (2001a) claims that RF does not overfit with an increasing number of trees. While this gives
reason to simply choose M to be sufficiently large to ensure that the training error rate has settled down
at a sufficiently low level, this paper still treats M as hyperparameter since larger values of M comes at
computational expense.

3.3.2 Gradient Boosting

Gradient Boosting is often seen as the state-of-the art machine learning method to tackle data min-
ing issues in different fields of application. In fact, GB counts as the most successful machine learning
technique on Kaggle, the leading online community of Data Scientists (Chen & Guestrin, 2016). The
dominant use of GB among machine learning practitioners makes it a natural candidate for the applica-
tion of forecasting GDP growth.

The idea of boosting has originally been developed to turn weak learners into strong learners and goes
back to the contributions of Friedman (2001). Weak or base learners can be understood as any learning
method which is at least slightly better than random guessing (Freund & Schapire, 1997). In the context
of this paper, single decision trees are used as base learners. The idea of gradient boosting trees is to
develop a number of trees in a sequential fashion. This means that in each step of the algorithm a new
tree is built using information from the trees developed in the steps before. More precisely, every new
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decision tree fits the training errors resulting from a composite tree model developed in the steps before.

Similar to Random Forests, boosting is another ensemble machine learning method. However, while in
Random Forest trees are built independently from each other, each regression tree in boosting highly
depends on what has happened in the algorithm before.20 The core of boosting lies in its sequential
nature where an initial weak learner becomes stronger with each iteration since a new tree is trained with
respect to the in-sample error of the ensemble that has so far been developed in the algorithm. Thus,
adding a new tree improves the composite model in each step of the algorithm. In other words, each
step boosts the model. In that sense, the final boosted tree model is an additively connected sequence of
dependent trees

f(x; Θ) =

M∑
m=1

T (x; Θm). (33)

Typically, a boosted regression tree model is estimated by minimizing a specific loss function with respect
to a given set of parameters. In case of decision trees, this set of parameters comprises the splitting variable
and the splitting point at each node defining the splitting regions Rj and the constant ŷRj assigned to

each region, Θm = {Rjm, ŷRjm
}Jm1 . Jm is the number of terminal leaf nodes which controls the tree size

and is constrained to be equal for each tree. In boosting, Jm is also referred as the interaction depth
that specifies the maximum depth of each tree, depthmax (i.e., the highest level of variable interactions
allowed). Note that the interaction depth is a tunable hyperparameter in the boosting algorithm. In a
boosting model, there are M different trees all of whose parameters ideally need to be considered in the
model estimation. Similar to RF, M is treated as hyperparameter with the important difference that
boosting can overfit if M is too large (James et al., 2013). The resulting optimization problem looks as
follows21

Θ̂ = arg min
Θ1,...,ΘM

N∑
i=1

L

(
yi,

M∑
m=1

T (xi; Θm)

)
. (34)

For most loss functions, this optimization problem requires highly complex numerical techniques which
are computationally not feasible (Hastie et al., 2009).
Note that the estimation of Θ = {{Rj1, γj1}J11 , . . . , {Rjm, γjm}Jm1 } would require 2 ·M · J parameters to
be determined simultaneously.

One solution to this problem is an approximation of the above global solution by means of a forward
stagewise additive modeling approach (Hastie et al., 2009). This strategy sequentially adds a new decision
tree to the expansion in each step of the algorithm and only optimizes the parameters of the new tree,
leaving the parameters of the previously added trees unmodified. This simplifies the optimization proce-
dure as in each step only the parameters of a single tree need to be estimated instead of all parameters
of M trees simultaneously. At each stage m = 1, . . . ,M the optimization problem boils down to

Θ̂m = arg min
Θm

N∑
i=1

L (yi, fm−1(xi) + νT (xi; Θm)) (35)

with fm−1(x) = fm−2(x) + νT (x; Θ̂m−1) := ŷm−1.

In GB, ν is the rate of learning determining how strongly new training errors from the prior step in the
stagewise algorithm are corrected by the new tree. Typically, ν is treated as hyperparameter steering
the speed of learning (Hastie et al., 2009). Note that Θm can be estimated using the top-down recursive
partitioning strategy outlined in equation (30).

20This distinction implies that parallel computing is not possible in the case of GB. In RF, however, the estimation
of trees can be carried out simultaneously on multiple CPUs. Generally, the author uses parallelization techniques to
accelerate execution time where possible. Furthermore, trees in boosting are not developed on a bootstrapped subsample
of the training data as it is the case in Random Forests. So there is no bootstrapping element in boosting which is another
contrast to RF (James et al., 2013).

21Note that in the forecasting context of this paper, a pair (xi, yi) corresponds to
(
x(t−h), yt

)
. Similarly, N refers to

t̄− h with t̄ as the last observation in the training set. For the sake of readability, the following formulations refrain from
the use of the exact time indices.
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This paper takes the MSE as loss function resulting in the following optimization specification

Θ̂m = arg min
Θm

1

N

N∑
i=1

(yi − fm−1(xi)− νT (xi; Θm))
2
. (36)

From optimization problem (36) it becomes obvious that in case of MSE as loss function, the new tree
fits the residual vector resm−1 = y − ŷm−1 which equals the difference between true values and the
predictions from the expansion model in the prior step

Θ̂m = arg min
Θm

1

N

N∑
i=1

(resm−1 − νT (xi; Θm))
2
. (37)

For loss functions other than the MSE, the optimization problem does not reveal an obvious residual vec-
tor in the objective function. This is where the concept of gradient descent and the invention of Gradient
Boosting in the benchmark paper of Friedman (2001) comes into play. The negative of a loss function’s
gradient, −gm−1, indicates the steepest direction on the loss function given the current location. In
other words, it determines the direction of the fastest way on the loss function leading to its minimum.
Therefore, one can understand the (negative) gradient as a direction vector in a numerical minimization
procedure which forms the basic solution mechanism in Friedman’s (2001) paper.

It is possible to calculate the gradient for every differentiable loss function given the current position
on the loss function. The current location on the loss function is determined by the predictions of the
composite model in the latest step of the boosting algorithm. The gradient can then be calculated as the
vector of partial derivatives with respect to the current predictions of all training observations

gm−1 =
δL
(
y, fm−1(x)

)
δfm−1(x)

. (38)

From (37), one can see that, indeed, for MSE as loss function the gradient boosting algorithm simplifies
to fitting a single tree to the residual vector resulting from the prior expansion model. This holds for
each of the steps of the boosting algorithm:

gm−1 =
1

2

δ(y − fm−1(x))2

δfm−1(x)

=− (y − fm−1(x)︸ ︷︷ ︸
resm−1

).
(39)

This means that one can interpret residuals as negative gradients. For loss functions other than the
square loss, this analogy does not hold. Therefore, the concept of gradients (which exists for every loss
function) is generally more useful than the concept of residuals (Li, 2016). In other words, Gradient
Boosting can be understood as combination of gradient descent optimization and model boosting.

3.3.3 Support Vector Regression

The groundwork for the development of Support Vector Regression goes back to Vapnik and Chervo-
nenkis and their contributions in the field of statistical learning (Smola & Schölkopf, 2004). Their work,
today known as VC -theory, resulted in one of the most widely used classification algorithms: the Support
Vector Machine. Support Vector Regression can be understood as a generalization of Support Vector
Machines for regression tasks. The good performance of Support Vector Regression on predicting time
series data, albeit mostly applied on micro financial time series (see for example Müller et al. (1997)
and Crone, Hibon, and Nikolopoulos (2011)), makes it an interesting candidate for an application on
macroeconomic time series data. Smola and Schölkopf (2004) give an excellent overview of the technical
details related to the estimation of SVR algorithms. In line with their paper, the following explanations
provide more details on the statistical learning algorithm in SVR.

Unlike SVM which aim at classifying labeled data in a high dimensional space by means of a nonlinear
hyperplane, SVR follows algorithmically a similar logic but with the ultimate goal to estimate a nonlinear
real-valued function whose realizations allow to predict the target variable given the high dimensional
input space, X. The explanation of SVR in this paper starts with the introduction of linear SVR and
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then expands to nonlinear SVR by incorporating mapping functions and kernels. In the linear case, the
above mentioned real-valued function has the following form

f(x; Θ) = βx+ b (40)

where β is (1×D) parameter vector and b a scalar.

Following the ε-SV regression approach in Vapnik (2013), the estimation procedure of f(x; Θ) is designed
to fulfill two essential criteria. First, for all training data points xi, f(x; Θ) is not allowed to deviate
more than a fixed value ε from yi, introducing a tube around f(x; Θ).22 Deviations of yi from f(xi) are
only allowed within the boundaries of this ε-tube. Second, f(x; Θ) is supposed to be as flat as possible.
Flatness of f(x; Θ) means that β is chosen to be small. This prevents the model from becoming overly
complex (i.e. from overfitting) and therefore useless for generalization purposes. One way to ensure
flatness of f(x; Θ) is to minimize the norm value β′β (Smola & Schölkopf, 2004). This results in the
following convex optimization problem:

Θ̂ = arg min
β, b

1

2
β′β

s.t. yi − (βxi + b) ≤ ε ∀ i
(βxi + b)− yi ≤ ε ∀ i.

(41)

Note that a function which fulfills the constraint for all points in the training data does not always exist.
If this is the case, the above optimization problem is not feasible. The solution to this scenario is the
introduction of slack variables, ξi and ξ∗i . Slack variables allow observations to be located outside the
ε-tube by exactly the size of ξi or ξ∗i , respectively. Training points ‘above’ the ε-tube have values ξi > 0
and ξ∗i = 0, training points ‘below’ the ε-tube are assigned ξi = 0 and ξ∗i > 0, while observations within
the tube are characterized by ξi = 0 and ξ∗i = 0.23 The optimization problem known as primal objective
function then becomes:

Θ̂ = arg min
β, b

1

2
β′β + C

N∑
i=1

(ξi + ξ∗i )

s.t. yi − (βxi + b) ≤ ε+ ξi ∀ i
(βxi + b)− yi ≤ ε+ ξ∗i ∀ i
ξi, ξ

∗
i ≥ 0 ∀ i.

(42)

The hyperparameter C regulates how strong deviations larger than ε are penalized in the minimization
problem. It balances the trade-off between flatness of f(x; Θ) and the amount up to which deviations
from the ε-environment are permitted. In the fashion of L2 regularization used in ridge regression, it
allows to steer model complexity. High values of C lead to a rather flat function since deviations outside
the ε-tube are strongly penalized, while low values of C increase model complexity bearing the risk of
overfitting the training data.

The corresponding loss function which only penalizes observations outside the ε-environment is referred
to as ε-insensitive loss function. It is defined as follows:

Lε :=

{
0 if |y − f(x; Θ)| ≤ ε
|y − f(x; Θ)| − ε else.

(43)

Optimization problem (42) can be stated as a Lagrange optimization by introducing nonnegative La-

22Note that in the forecasting context of this paper, a pair (xi, yi) corresponds to
(
x(t−h), yt

)
. Similarly, N refers to

t̄− h with t̄ as the last observation in the training set. For the sake of readability, the following formulations refrain from
the use of the exact time indices.

23Note that one could also have introduced only one slack variable defined as the absolute value of the difference between
f(x) and y. However, the use of two slack variables makes later steps in the derivation of the SVR algorithm less cumbersome.
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grangian multipliers αi and α∗i as well as ηi and η∗i :

L =
1

2
β′β + C

N∑
i=1

(ξi + ξ∗i )

−
N∑
i=1

(ηiξi + η∗i ξ
∗
i )

−
N∑
i=1

αi(ε+ ξi − yi + βxi + b)

−
N∑
i=1

α∗i (ε+ ξ∗i + yi − βxi − b).

(44)

It can be shown that the primal objective function has a saddle point at the optimal set of primal

variables β, b and ξ
(∗)
i and dual variables α

(∗)
i and η

(∗)
i (Smola & Schölkopf, 2004).24 From the saddle

point property, it follows that the first partial derivatives of the Lagrange function (with respect to the
primal variables) need to be zero at optimality.

∂

∂b
L =

N∑
i=1

(α∗i − αi) = 0 (45)

∂

∂β
L = β −

N∑
i=1

(αi − α∗i )xi = 0 (46)

∂

∂ξ
(∗)
i

L = C − η(∗)
i − α

(∗)
i = 0 (47)

Substituting (45), (46) and (47) into the Lagrange function results in an alternative representation of
the objective function, the so-called dual objective function that can be solved using standard quadratic
programming (Wang, Xu, Lu, & Zhang, 2003):

Θ̂ = arg max
α, α∗

1

2

N∑
i=1

N∑
j=1

(αi − α∗i )(αj − α∗j )x′ixj

− ε
N∑
i=1

(αi + α∗i ) +

N∑
i=1

yi(αi − α∗i )

s.t.

N∑
i=1

(αi − α∗i ) = 0

0 ≤ α(∗)
i ≤ C ∀ i.

(48)

Unlike the primal optimization problem, the dual formula is represented as inner product of the training
data x′ixj . In the later nonlinear extension, this dot product representation turns out to be particularly
useful. The substitution of the partial derivatives eliminates not just the primal variables but also the
dual variables ηi and η∗i . As a result, the dual optimization problem depends only on αi and α∗i .

25

From equation (46), it results that the parameter vector β can be fully described as linear combination
of the training observations

β =

N∑
i=1

(αi − α∗i )xi. (49)

It follows immediately that the linear SVR function (40) is defined as

f(x; Θ) =

N∑
i=1

(αi − α∗i )x′ix+ b. (50)

24Note that in the remainder of this section, ξ
(∗)
i refers to both ξi and ξ∗i . The same applies to α

(∗)
i and η

(∗)
i .

25Note that the estimation of b is not incorporated into the dual objective function (48). However, for the full specification
of f(x; Θ), its computation is required as well. While Smola and Schölkopf (2004) derive an upper and lower bound for b,
Keerthi, Shevade, Bhattacharyya, and Murthy (2001) outline further ways of specifying the constant term b. The interested
reader is referred to these papers.
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The SVR function (50) reveals an important property of SVR. It shows that the prediction of new data
points does not require the estimation of the parameter vector β ∈ RD. This means that f(x; Θ) is
independent of the dimensionality of the feature space X but only depends on the number of support
vectors. The number of support vectors required to describe β can be analyzed further by means of the
Karush–Kuhn–Tucker (KKT) conditions (Karush, 2013; Kuhn & Tucker, 1951). Generally, solutions of
optimization problems with inequality constraints such as in the case of SVR need to fulfill the KKT
conditions to be considered as optimal (Smola & Schölkopf, 2004). One of these conditions is the comple-
mentary slackness condition which demands that at an extremum or saddle point, the products between
dual variables and constraints need to equal zero:

αi(ε+ ξi − yi + βxi + b) = 0

α∗i (ε+ ξ∗i + yi − βxi − b) = 0
(51)

(C − αi)︸ ︷︷ ︸
ηi

ξi = 0

(C − α∗i )︸ ︷︷ ︸
η∗i

ξ∗i = 0.
(52)

From KKT conditions (51), it can be seen that both αi and α∗i need to be zero for training observations
that are strictly located within the ε-tube. For such observations, the second factor in both equations of
(51) is strictly nonzero such that αi and α∗i have to equal zero in order for the complementary slackness
condition to hold. This means that all observations inside the ε-environment disappear in equation (50).
For observations which lie outside the tube either αi or α∗i is nonzero. These training observations -
located outside the ε-tube - are called Support Vectors. This means that the number of parameters in
SVR equals the number of Support Vectors and does not depend on the dimension of the feature space
X. For this reason, SVR is considered as parsimonious machine learning method (Vapnik, Golowich,
& Smola, 1996).26 Introducing a set S which only includes observations located outside the ε-tube and
therefore acting as Support Vectors, the SVR function can be defined as

f(x; Θ) =
∑
i∈S

(αi − α∗i )x′ix+ b. (53)

It is also important to mention that SVR models only depend on inner products, 〈xi,x〉 = x′ix =∑D
d=1 xidxd, between Support Vectors and the new observation of interest. So specifying equation (53)

only requires these inner products and not the observations themselves. Clearly, one needs to know the
observations in order to calculate the inner products but the following derivation of the nonlinear exten-
sion of SVR shows that it is possible to obtain the inner products directly. This can be achieved by the
use of kernel functions (Smola & Schölkopf, 2004).

One way to apply the above linear SVR to nonlinear data is to make use of a nonlinear mapping function
Φ(x). The regression function and the optimization problem are then defined by inner products of the
corresponding mapping function

f(x; Θ) =
∑
i∈S

(αi − α∗i )Φ(xi)
′Φ(x) + b. (54)

Note that a mapping function shifts the optimization problem and the resulting SVR model from the
original feature space into a new higher dimensional feature space

Φ : X → X (55)

with X ⊂ RQ where Q > D.

For example, consider the following mapping function assuming that there are only two distinct variables
in the original feature space

Φ(xi1, xi2) = (x2
i1,
√

2xi1xi2, x
2
i1) (56)

In this example, Φ(x) maps the original two dimensional space into a new three dimensional feature
space. The dimensionality of the resulting feature space rises disproportionally with the dimension of the

26The parsimony becomes obvious when comparing SVR’s fast execution time with the computational expense of other
machine learning algorithms with SVR running much faster
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original space. Moreover, the dimension of the resulting space also depends on the nature of the map-
ping function. Therefore, extending SVR solely by the use of nonlinear mapping functions may become
computationally highly expensive or even infeasible.

This is where the kernel functions come into play. The core of the extension of SVR to learn nonlinear
functions lies in the usage of kernel functions. The fundamental property of kernel functions is that they
shift the original feature space implicitly to an higher order feature space via the mapping function Φ(x).
Kernel functions do this implicitly as they never compute the actual coordinates of the original features
in this higher order space but rather define them as the inner products in this transformed space

K(xi,x) = Φ(xi)
′Φ(x). (57)

In the context of kernel functions, the higher order feature space is therefore also referred to as inner
product space. For the above mapping function, the corresponding kernel looks as follows

K(xi,x) = Φ(xi)
′Φ(x)

= (x2
i1

√
2xi1xi2 x

2
i1)(x2

1

√
2x1x2 x

2
1)′

= x2
i1x

2
1 + 2xi1x1xi2x2 + x2

i2x
2
2

= (xi1x1 + xi2x2)2

= (x′ix)2

(58)

which is a second order polynomial kernel.

As kernels take input vectors xi and x as function arguments and directly return the value of the in-
ner product of their images Φ(xi) and Φ(x), the functional form of Φ(x) does not have to be known
(Bhattacharyya, 2018). Therefore, extending SVR to nonlinear problems by means of kernel functions is
computationally inexpensive. The necessary and sufficient conditions which guarantee that K(xi,x) is
an inner product in the higher order feature space are known as Mercer’s Theorem.27

Given that K(xi,x) satisfies Mercer’s Theorem, the nonlinear SVR function can be defined as follows:

f(x; Θ) =
∑
i∈S

(αi − α∗i )K(xi,x) + b. (59)

27For more details on Mercer’s Theorem, refer to Smola and Schölkopf (2004).
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4 Results

4.1 Model Building

This section presents the tuning results that determine the hyperparameter calibration of the respec-
tive forecasting models. The model calibration process takes exclusively place on the training data in
the inner loop of cross-validation. The strict demarcation of model building on the training set and
model validation, as presented in section 4.2, on the test set allows to assess the models’ generalization
performance most accurately. In the following, the tuning results are presented for each model separately.

Univariate Autoregressive Model

The crucial part of developing an ARMA model is to determine the number of lags of the target variable
and of the error term. Prior to specifying the model order, it is helpful to analyze the patterns in the
ACF and PACF of the seasonally adjusted quarterly GDP growth variable as presented in figure 5. From
a pure visual inspection of the correlograms, it is difficult to draw any conclusions regarding the model
order. The significant spike at lag 2 in the PACF gives weak hint to an AR(2) process. However, in order
to find out the best model order the use of information criteria is necessary.

Figure 5: Empirical Autocorrelation Functions
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Note: Top figure shows ACF of real quarterly U.S. GDP growth up to lag 10. Bottom figure shows PACF for the same
series. Dashed gray lines indicate 95% confidence bands.

Following the seven-step procedure of Hyndman and Athanasopoulos (2018), the final order selection is
based on the corrected Akaike Information Criterion (AICc), an information criterion based on the well
known Akaike Information Criterion (AIC) with a small sample size correction term (Hurvich & Tsai,
1989). For reasons of sparsity, the maximum of lags for both target variable and error term is restricted
to 10 in the calculation of AICc.

Applying AICc to the training set indicates that ARMA(2, 1) describes U.S. GDP growth best. Diagnos-
tic analyses of the training residuals resulting from an ARMA(2, 1) strongly support the model selection.
Portmanteau tests with the underlying H0 that the autocorrelation of the residuals is not significantly
different from zero cannot be rejected at any conventional level. This clearly supports the model choice.
Visualizations of the residuals as well as detailed results from the Portmanteau tests can be found in

4 RESULTS 27



appendix C.

Vector Autoregressive Model

Despite VAR’s advantage of acting on a richer information set as compared to its univariate counterpart,
VAR models strongly suffer the curse of dimensionality as the number of parameters increases dispro-
portionally with the number of incorporated variables. Note that for a given number of K variables in
the VAR system, K2 coefficients for each of the p distinct coefficient matrices need to be estimated. In
addition, the K(K − 1)/2 elements in the covariance matrix of the error terms need to be determined.
At some point, a VAR model runs out of degrees of freedom, making the inclusion of additional variables
impossible. In fact, VAR models are rarely used to model more than six to eight variables (Bernanke
et al., 2005). In this paper, the degrees of freedom problem is of particular concern since the training data
comprises more variables than observations. Generally, the researcher needs to decide which variables
to include as a first step in specifying a VAR model. In a scenario where the researcher faces a high
dimensional space of possible predictors the advantages of VAR models vanish due to their limitation in
coping with larger sets of variables. The choice of variables typically refers to economic theory or a priori
ideas of the researcher. In this fashion, this paper considers two distinct VAR models.

The first one (later referred to as NK VAR) is ‘inspired’ by a New Keynesian approach of modeling
macroeconomic aggregates. In its simplest form, a New Keynesian economy is described by three vari-
ables: output gap (i.e. the gap between actual GDP and potential GDP), inflation (CPIAUCSL) and
the nominal interest rate (FEDFUNDS).28 Economically motivated VAR models of this kind are closely
related to the heavily criticized doctrine of DSGE modeling in macroeconomics. Giacomini (2013) gives
a detailed explanation of how, under certain identification strategies, a DSGE model can be represented
as a reduced-form VAR model. In simple terms, DSGE models focus on structural equations which are
based on economic rationale and allow for contemporaneous relations among its variables but at the same
time demand uncorrelated error terms across equations. Orthogonality of the error terms then allows to
shock one equation and analyze the effects of this isolated shock on all other variables via impulse re-
sponse functions (Tenhofen, Guntram, & Heppke-Falk, 2010). Typically, a New Keynesian DSGE model
is based on the following structural relations. It describes aggregate demand via the IS curve by mod-
eling current output gap as the difference between expected output gap and the disparity between real
interest rate and the natural interest rate. Furthermore, it incorporates aggregate supply via the New
Keynesian Phillips curve which relates inflation today to both expected inflation one period ahead and
current output gap. Finally, it considers the Taylor Rule that implies that nominal interest rates respond
to current inflation and output (see for example Gaĺı (2018) for more information on the current state of
New Keynesian DSGE models). It is the predominance of such New Keynesian approaches in modeling
and forecasting economic aggregates which has been target of much of the criticism in the aftermath of
the global financial crisis. A pure VAR model, in contrast, is a statistical approach to yield forecasts
from the interrelation of several time series. It explains the realizations of a target variable today with
its own lags and lagged values of other variables incorporated into the system of equations. In this sense,
VAR models exploit the autocorrelation and the intertemporal cross-correlation of the variables included
in the system in order to produce forecasts. This paper does not intend to model overly stylized relations
between macroeconomic aggregates, nor is it interested in detecting ‘causalities’ by means of exogenous
shocks as it is typically done in DSGE frameworks. Rather, it attempts to exploit information entailed in
the intertemporal correlation among multiple time series in order to produce GDP growth forecasts. In
fact, a VAR model incorporating the variables of a typical three-variable New Keynesian DSGE model
is the closest this paper gets in setting up a model based on economic theory.

The second VAR specification (later referred to as LI VAR) focuses more on the potential forecasting
quality of the features included in the vector autoregression. It aims at exploiting the signaling effect
of variables which tend to have a leading relationship to movements in the business cycle. Therefore,
the second VAR model includes the six U.S. leading indicators introduced in section 2.2. According to
the OECD (2019), these comprise housing starts (HOUST), manufacturers’ new orders of durable goods
(AMDMN OX), S&P 500 stock price index (S P 500), consumer sentiments (UMCSEN TX), weekly
hours worked in manufacturing (AWHMAN) and interest rate spread between 3-Month treasury con-
stant maturity and federal funds rate (TB3SMFFM) for the U.S. economy (see J. H. Stock and Watson

28See Chauvet and Potter (2013) and J. H. Stock and Watson (2002) for the implementation of a New Keynesian
forecasting model and J. H. Stock and Watson (2001) who instead of GDP incorporate unemployment via Okun’s Law
into their three-variable VAR model. This paper takes real GDP growth, yt, instead of output gap in the respective VAR
models.
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(2002) for a similar approach).

The lag length of the VAR(p) models is determined by the Bayesian Information Criterion. The maxi-
mum lag order considered in building the model is capped at 10 for reasons of parsimony. The coefficients
in the system of equations in (16) can be estimated by OLS, equation by equation. Since the white noise
components are assumed to be independent of the lagged values of yt, the OLS estimates are consistent
(Verbeek, 2004). Elements in the covariance matrix are estimated from the sample covariance matrix
of the residuals. It is necessary to test for the assumption of serially uncorrelated residuals to justify
the model’s correct specification. In this paper, a multivariate extension of the Box-Pierce test is used
to test for serially correlated residuals (Box & Pierce, 1970). If this form of Portmanteau test hints to
serial correlation in the residuals, the lag order is extended sequentially, moving closer to the model order
suggested by AIC. This process is continued until the Portmanteau test gives sufficient confidence for seri-
ally uncorrelated residuals at a reasonable number of lags. A traditional F -Test based Granger causality
analysis is conducted both for the overall model and specifically for the equation in the VAR system with
real GDP growth, yt, on the left-hand side. Model building results including information criteria, final
order selection and model specification tests can be found in table 2 for both VAR models. Both Granger
causality tests as well as the Portmanteau tests suggest that the models are specified correctly.

Table 2: VAR Results

(a) New Keynesian VAR(2) model

Joint Granger causality Single Granger causality Multivariate Box-Pierce test
left-hand variable p-value included variable p-value lags p-value

yt < 0.01 30 < 0.01
CPIAUCSL < 0.01 CPIAUCSL < 0.01 40 0.04
FEDFUNDS < 0.01 FEDFUNDS < 0.01 50 0.22

BIC 2
AIC 10

(b) Leading indicator VAR(1) model

Joint Granger causality Single Granger causality Multivariate Box-Pierce test
left-hand variable p-value included variable p-value lags p-value

yt < 0.01 20 < 0.01
HOUST < 0.01 HOUST 0.02 25 < 0.01
AMDMN OX < 0.01 AMDMN OX 0.04 30 < 0.01
S P 500 0.01 S P 500 0.28 35 0.11
UMCSEN TX < 0.01 UMCSEN TX 0.09 40 0.24
AWHMAN < 0.01 AWHMAN < 0.01 45 0.26
T5YFFM < 0.01 T5YFFM < 0.01 50 0.65

BIC 1
AIC 2

Note: For each equation in the VAR model joint, Granger causality tests determine whether the simultaneous inclusion of
all right-hand variables other than the lags of the left-hand variable leads to a significant reduction in RSS. This means that
the test compares the RSS of the AR model of the left-hand variable with the RSS of the VAR model including all variables.
The column ‘left-hand variable’ reflects the respective equation in the VAR model for which the joint Granger causality is
conducted. If the p-value is below the 5% level, the lagged values of the right-hand variables are said to ‘Granger cause’
the left-hand variable.
The single Granger causality is designed only for the equation where yt is on the left-hand side and tests whether the in-
clusion of the lags of the listed right-hand variable leads to a significant decrease in RSS. The column ‘included variable’
reflects the right-hand variable which is included in the minimal model where GDP is only regressed on its own lags. If the
p-value is below the 5% level, the lagged values of the included variable is said to ‘Granger cause’ real GDP growth, i.e. yt.
Note that the in-sample reduction in RSS due to the inclusion of the S&P 500 price index in the leading indicator model
is insignificant at the 10% level. For this reason, S&P 500 price index will not be considered in the final leading indicator
forecasting model.
The multivariate Box-Pierce test reflects joint statistical significance of the H0 of no autocorrelation up to the number of
specified lags. P -values above the 5% level suggest that the residuals in VAR model are not autocorrelated. The choice of
the number of lags incorporated into Portmanteau tests is controversially discussed in literature (see, for example, Hynd-
man (2014) for a reflection on the issue). The asymptotic χ2-distribution under the null hypothesis only holds if the number
of lags is sufficiently large; yet if the number is too large, the test loses its power. Both VAR models indicate non-existence
of autocorrelation in the residuals at a reasonable number of lags.
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Factor-Augmented Vector Autoregressive Model

Specifying FAVAR models requires two essential steps: finding the optimal number of components and
specifying the right number of lags. This paper uses cross-validation with a rolling-origin-recalibration
strategy, as it has been described in section 3.1.2, to determine the optimal number of principal compo-
nents. The determination of the optimal number of components is exclusively conducted on the training
set. For reasons of parsimony, the maximum number of components considered during cross-validation
is limited to 10. Components are extracted from the correlation matrix of the feature space.
The ultimate number of principal components entering the forecasting model can be found in table 3.
Appendix D shows further details regarding the explained variance and the loadings of the respective
principal components.

This paper implements two different FAVAR models. The first one (later referred to as Full FAVAR)
considers all variables of the feature space in the Principal Component Analysis. A second FAVAR model
(later referred to as S&W FAVAR) only considers features which have also been used by J. Stock and
Watson (2012) in their paper ‘Disentangling the Channels of the 2007 - 2009 Recession’. Their paper is
particularly interesting in the context of this study for two reasons. First, they use a very similar dataset
as in this paper with variables from the Federal Reserve Bank. Both datasets comprise a large number
of macroeconomic time series for the U.S. economy with the earliest observations dating back to the first
quarter of 1959. The maintainers of FRED-QD provide a label that indicates which of the variables have
been used in the paper of J. Stock and Watson (2012).29 Their dataset comprises mainly disaggregated
variables and excludes aggregate variables such as total consumption or the like. Second, using a dynamic
factor model J. Stock and Watson (2012) analyze whether in the course of the global financial crisis a
structural break in the factor loadings has been registered. They find little evidence for a rise of ‘new’
factors in the financial crisis of 2007, leading them to the conclusion that the crisis has been the result
of shocks that were not substantially different to previous shocks but just larger (J. Stock & Watson,
2012). Therefore, they argue that the ‘economy responded in an historically predictable way’ (J. Stock
& Watson, 2012, p. 129). Their finding is fundamental to the widespread criticism of macroeconomic
forecasting outlined in the introduction of this paper. If the last crisis could have been predicted, then
the methodological criticism is very much legitimate since existing forecasting models failed to foresee
what potentially would have been predictable. This reinforces the necessity to find new ways that are
capable of forecasting macroeconomic aggregates more reliably.

Random Forest

A big advantage of Random Forest is that the algorithm has a built-in feature selection procedure which
allows to assess the forecasting importance of the different forecasting features. This gives RF a greater
degree of interpretability as compared to many other machine learning methods. Splitting the train-
ing data in the decision tree by means of a specific predictor variable, typically improves the RSS. This
makes it possible to assign to each feature acting as splitting variable in at least one of the trees a variable
importance measure. Since a feature may act as splitting variable several times in multiple trees, the
overall importance measure equals the improvement in RSS averaged over all trees in which it operates
as splitting criterion (Hastie et al., 2009). Note that the random subspacing method makes it more likely
that all features act as splitting variable at least once in a forest. The variable importance measure,
displayed in figure 6, provides a good insight into the feature space and allows to assess which features
are particularly important in predicting the target variable.

On the one-quarter horizon, variables of the National Income and Product Accounts such as real per-
sonal consumption expenditures in the service sector (PCES VXt−1) and residential real private fixed
investments (PRF IXt−1) have strong power in short-term GDP growth forecasting. These variables are
direct components of GDP and it seems natural that changes in these variables have strong impact on
short-term changes in GDP. Also, the ratio of published job vacancies to the total number of unemployed
(HWIURATI OXt−1) has strong forecasting power with regard to future short-term movements in GDP.
This seems plausible since a high number of job vacancies relative to the number of unemployed people,
for instance, suggests that companies have full order books and expect good business prospects. This, in
turn, translates into future growth in GDP.

On the one-year horizon, information from the yield curve seems to be particularly important in forecast-
ing U.S. GDP growth. Both 5-year treasury constant maturity minus federal funds rate (T5YFFMt−4)
and 10-year treasury constant maturity minus 3-month treasury bill rate (GS10TB3MXt−4) are important
GDP predictors. Changes in interest rate spreads reflect investors’ expectations concerning the future. An

29See appendix A, fourth column, for a label indicating which variables were used in J. Stock and Watson (2012).
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Table 3: FAVAR Results

(a) Full FAVAR(3) model including one factor

Joint Granger causality Single Granger causality Multivariate Box-Pierce test
left-hand variable p-value included variable p-value lags p-value

yt < 0.01 10 0.06
FACTOR1 0.03 FACTOR1 < 0.01 20 0.38

30 0.26

BIC 1
AIC 3

(b) S&W FAVAR(3) model including two factors

Joint Granger causality Single Granger causality Multivariate Box-Pierce test
left-hand variable p-value included variable p-value lags p-value

yt < 0.01 10 0.10
FACTOR1 < 0.01 FACTOR1 < 0.01 20 0.47
FACTOR2 < 0.01 FACTOR2 < 0.01 30 0.47

BIC 2
AIC 3

Note: The full FAVAR(3) model takes the complete feature space of 210 variables into consideration when estimating the
factors. Cross-validation on the training set yields the lowest RMSE if only the first principal component is included in the
forecasting model. The Principal Component Analysis in the S&W FAVAR(3) model is based on the variables considered
in J. Stock and Watson (2012). These comprise 100 variables from the original feature space. For the S&W FAVAR(3)
model, cross-validation yields the lowest RMSE if the first two principal components are incorporated. The small number of
factors which enter the VAR equation is consistent with previous empirical work (see, for example, J. H. Stock and Watson
(2005)). See also notes on table 2 for more details regarding the tests presented in this table.

Figure 6: Variable Importance of Random Forest
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Note: This figure shows the total decrease in node impurities from splitting the training data by means of the respective
feature averaged over all trees. Node impurity is measured by RSS. Variable importance is measured on the out-of-sample
test set and is only displayed for the ten most important splitting variables.

inverted yield curve, for instance, which implies that longer-term returns are lower than short-term rates,
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signals poor expectations concerning the future state of the economy. The yield curve as expectation-
based measure is typically referred to as leading indicator of changes in the business cycle (OECD, 2019).
Therefore, the high importance of yield curve-related variables seems highly plausible. Another variable
which has long-term forecasting power is the adjusted monetary base (AMBSLREALt−4). Adjusted
monetary base is the sum of currency in circulation outside the Federal Reserve Banks and the U.S.
Treasury. It is the variable that captures monetary policy interventions of the Federal Reserve System
(FED). Increasing the monetary base through purchases of bonds improves the investment landscape
which ultimately favors GDP growth. With this reasoning, the strong forecasting power of the adjusted
monetary base seems plausible as well.

The final RF specification which results from calibrating the model on the training set can be found in
table 4. As it turns out, the best (short-term) GDP growth forecasting model consists of only 90 decision
trees. With a minimum terminal leaf size of 95 observations, these trees are rather small. Moreover, the
trees randomly consider a rather large number of 183 out of the 210 possible splitting variables at each
node. A visual inspection of how first-stage tuning narrows down the initially wide search spaces which
ultimately lead to the here mentioned optimal values can be found in appendix E.

Gradient Boosting

Similar to RF, Gradient Boosting also returns a variable importance measure (Friedman, 2001). Figure 7
shows that the most important features for GB are very similar to those selected by RF on both horizons.
This suggests that the results obtained from both algorithms are robust. Besides information from the
National Income and Product Accounts, GB additionally attaches high forecasting importance to changes
in the stock market (S P 500t−1) on the short-term horizon. Changes in the stock market are typically
seen as leading indicator because fluctuations in stock prices reflect investors’ expectations concerning
the future state of the economy. Moreover, it is interesting to see that in the GB framework the consumer
sentiment index of the University of Michigan (UMCSEN TXt−4) is also among the top ten variables
with highest feature importance on the one-year horizon. Sentiment indices are highly expectation-based
and their changes often precede later movements in the business cycle. Therefore, it makes sense that
GB attaches strong forecasting power to UMCSEN TX.

Figure 7: Variable Importance of Gradient Boosting
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Note: Scaled variable importance is measured on the out-of-sample test set and is only displayed for the ten most important
splitting variables. See Friedman (2001) for the exact calculation of relative importance measure in boosted regression trees.

4 RESULTS 32



The final GB specification which results from calibrating the model on the training set can be found in
table 4. As it turns out, the best (short-term) GDP growth forecasting model consists of a sequence of
500 decision trees which are no deeper than 9 variable interactions. The tree sequence learns at a rate
of 0.025 which is consistent with literature (James et al., 2013). A visual inspection of how first-stage
tuning narrows down the initially wide search spaces which ultimately lead to the here mentioned optimal
values can be found in appendix E.

Support Vector Regression

This paper tries different kernels to shift the original feature space to an implicit higher order feature
space. The following kernels are used for this task:

Polynomial kernel: K(xi,x) = (γ〈xi,x〉)w (60)

Radial kernel: K(xi,x) = exp(−γ(xi − x)′(xi − x)) (61)

Sigmoid kernel: K(xi,x) = tanh (γ〈xi,x〉) (62)

The kernels are treated as hyperparameters and the best performing kernel on the training data is the
final kernel used to produce forecasts on the test set. It is important to mention that w and γ are tunable
kernel parameters. However, following the approach in Cherkassky and Ma (2004), tuning only takes C
and ε as well as the type of kernel into account. While the above kernels are all considered in the tuning
process, their parameters are held fix at reasonable values (w equals 3 and γ = (number of features)−1).
The final SVR specification which results from calibrating the model on the training set including the
best performing kernel can be found in table 4. It turns out that a sigmoid kernel performs best in the
(short-term) GDP forecasting task. The optimal regularization parameter and the optimal radius of the
ε-tube assume reasonable values. A visual inspection of how first-stage tuning narrows down the initially
wide search spaces which ultimately lead to the here mentioned optimal values can be found in appendix E.

Table 4: Optimal Hyperparameter Setting

Model Hyperparameter Optimal value

RF M 90
dtry 183
nodemin 95

GB M 500
ν 0.025
depthmax 9

SVR Kernel Sigmoid
C 0.0677
ε 0.0587

Note: Optimal values according to second-stage finetuning based on one-quarter ahead forecasts.
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4.2 Generalization Performance

In this section, the tuned models’ generalization performance is examined. The hyperparameters which
result from the calibration strategies applied on the training data form the basis of the final models.
The final evaluation of these models takes place on the hold-out test set that comprises the period from
2007-Q2 to 2019-Q2. This out-of-sample assessment allows to compare the different forecasting models
based on how well they perform on unseen data. Moreover, the inclusion of the global financial crisis in
the test set permits to assess the models’ capability to forecast recessions in advance. In a first analysis,
it is tested how the models perform given different information sets. In a second assessment, the focus
lies on the models’ performance in the last crisis. All assessments comprise the performance of both
one-quarter ahead and one-year ahead forecasts.

4.2.1 Performance based on Different Information Sets

In the following analysis, the performance of the forecasting models is evaluated in the context of the
amount of information the models are trained with. The analysis moves from a sparse information set
including only the target variable and lags thereof to a richer information set which includes all significant
leading indicators introduced in section 2.2, and ends with the richest information set possible comprising
the complete feature space X. In this way, it is possible to get an understanding of how well the models
perform against each other if they are facing the same amount of information. Moreover, it highlights
that econometric models such as RW, AR and VAR are limited in the amount of information they can
cope with. Indeed, most econometric models are only designed to cope with sparse information while
machine learning models display their full potential when being confronted with rich information sets.

Information Set I

In the first step, the models are running on the most basic information set comprising only the target vari-
able and its lags It = {y1, . . . , yt}. This means that the machine learning methods only consider lags of
the target variable as predictors, although they are capable of extracting information from a much larger
number of predictors. Table 5 shows the out-of-sample performance as measured by both MdRAE and
RelRMSE.30 Based on absolute errors, MdRAE is little susceptible to large forecast errors. RelRMSE,
in contrast, is based on squared errors and the mean as aggregation measure and is thus much more
sensitive to large forecasting errors. Assessing the models’ generalization performance on both measures
sheds more light on the models’ strengths and weaknesses. Both measures are relative metrics which
can be easily interpreted: If the measure is smaller than one, the respective model performs better than
the benchmark model; if the measure is greater than one, the opposite holds. In the analysis based on
information set I, the RW model serves as benchmark. This means that the errors in table 5 are relative
to the errors produced by the RW model. The best results for both measures on the respective forecasting
horizons are highlighted in color.

Two important insights result from table 5. First, ARIMA outperforms the RW model on both horizons
and both measures. Measured by RelRMSE, ARIMA is even the best performing model which means that
it outperforms the more complex machine learning models. Generally, machine learning models perform
relatively poor on information set I. Only RF outperforms RW consistently (while being outperformed
by ARIMA in most instances). GB produces in all instances even worse forecasts than the näıve RW
model. SVR is rather volatile. Based on MdRAE, SVR is the best model on information set I and slightly
outperforms ARIMA, while it shows poor results for the RelRMSE. This suggests that the model is likely
to produce large errors in periods which are difficult to forecast. Overall, the results on information
set I are little surprising as the machine learning models remain far below their potential when being
confronted with the history of the target variable only.

Information Set II

The second step extends the information set to the leading indicators and their lags It = {y1, . . . ,yt}
with yt as vector including the target variable as well as all leading indicators with significant Granger
causality. In the analysis based on information set II, the leading indicator VAR model is used as bench-
mark accordingly.

In table 6, it is interesting to see how the machine learning models start to perform better as they run on
a richer information set. Especially GB clearly outperforms the benchmarking VAR model on the one-

30See section 3.1.4 for a definition of the error measures and a description of their properties.
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Table 5: Model performance: Information Set I

Model
Information Benchmark 1-quarter ahead 1-year ahead

set model MdRAE RelRMSE MdRAE RelRMSE

RW I 5
ARIMA I 0.808 0.928 0.755 0.800
RF I 0.971 0.945 0.690 0.806
GB I 1.050 1.006 1.015 1.056
SVR I 0.776 1.006 0.755 0.804

Note: Input space in machine learning models comprise real GDP growth up to lag 2 in order to be in line with the AR(2)
framework in the autoregression.

quarter ahead forecast. On both forecasting horizons, the best models come from the machine learning
family: GB on the one-quarter horizon and SVR on the one-year horizon. Nonetheless, in some instances,
the machine learning methods perform worse than the benchmark. It is also noteworthy that ARIMA
outperforms the benchmark model in all instances which shows that univariate autoregression is also a
good model for the task of forecasting U.S. GDP growth.

Table 6: Model performance: Information Set II

Model
Information Benchmark 1-quarter ahead 1-year ahead

set model MdRAE RelRMSE MdRAE RelRMSE

RW I 0.957 1.050 1.216 1.215
ARIMA I 0.803 0.974 0.993 0.972

LI VAR II 5
NK VAR II 0.717 1.034 0.999 0.993
RF II 0.938 0.978 1.022 0.993
GB II 0.666 0.909 1.273 0.993
SVR II 0.863 1.102 0.965 0.958

Note: Input space in machine learning models comprise real GDP growth and all Granger causing leading indicators up to
lag 1 in order to be in line with the leading indicator VAR(1) framework.

Information Set III

In the final step, the models are confronted with all variables in the feature space It = {x1, . . . ,xt} with
xt as vector including the target variable as well as all other macroeconomic series observed in t. The
Full FAVAR model that optimally extracts one principal component from the full feature space is used
as benchmark model.

There are three important conclusions one can draw from the results in table 7. First, extending the infor-
mation set to the full feature space leads to a clear improvement in the overall out-of-sample forecasting
performance. All models which run on the inferior information sets I and II show on both horizons and
both measures larger forecasting errors. This is obvious because all measures in the upper two parts of
table 7 take on values greater than one which means that they perform worse compared to the benchmark
FAVAR model that is capable of operating on information set III. Second, the best models in all instances,
again, belong to the machine learning family. RF performs best as measured by the MdRAE and GB
outperforms all other models based on RelRMSE. GB’s superiority on the RelRMSE points towards its
capability to forecast difficult periods where other models throw large errors. Third, despite the fact
that the best models come from the machine learning family, their performance is not consistently better
than the results of the benchmark FAVAR model. In fact, SVR is even outperformed by the benchmark
FAVAR in all instances. Also, the differences in forecasting performance of the models within information
set III is mostly marginal. In order to evaluate whether the superior performance of machine learning
methods is significant, the Diebold-Marino (DM) Test serves as useful tool. Based on the forecasting
error differential between two models, the original DM-Test formulates a test statistic which, under the
null hypothesis that both models perform equally well, is normally distributed. Figure 8 displays the test
results of the DM-Test.
Figure 8 provides further insights regarding the question of how useful machine learning is for the task
of macroeconomic forecasting. It can be seen that the machine learning methods’ accuracy increase com-
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Table 7: Model performance: Information Set III

Model
Information Benchmark 1-quarter ahead 1-year ahead

set model MdRAE RelRMSE MdRAE RelRMSE

RW I 1.567 1.226 1.522 1.329
ARIMA I 1.178 1.138 1.136 1.064

LI VAR II 1.707 1.168 1.306 1.094
NK VAR II 1.007 1.207 1.179 1.086

Full FAVAR III 5
S&W FAVAR III 1.052 1.000 1.049 0.930
RF III 0.984 1.009 0.811 0.895
GB III 1.197 0.959 0.981 0.869
SVR III 1.056 1.035 1.086 1.029

Note: Input space in machine learning models comprise real GDP growth and all features up to lag 1 which is the most
parsimonious forecasting feature space.

pared to the econometric models operating on information set I and II is not only substantial in size but
also in many instances statistically significant as indicated by the DM-Test. There are two important
exceptions to this. On the one hand, ARIMA is only outperformed by RF in a significant fashion. This
reaffirms that ARIMA is not completely uncompetitive in forecasting U.S. real GDP growth. On the
other hand, although the New Keynesian VAR model produces worse forecasts on the one-year horizon,
the error differentials are not significant according to the DM-Test.

Figure 8: Diebold-Marino (DM) Test Results of Machine Learning Methods against Econometric
Models

18%

11%

14%

16%

-1%

-1%

22%

16%

18%

21%

4%

4%

16%

9%

11%

14%

-3%

-4%

33%

16%

18%

18%

11%

4%

35%

18%

20%

20%

13%

7%

23%

3%

6%

5%

-3%

-11%

1-quarter ahead 1-year ahead

RF GB SVR RF GB SVR

RW

ARIMA

LI VAR

NK VAR

Full FAVAR

S&W FAVAR

Machine Learning Methods

E
c
o
n

o
m

e
tr

ic
M

o
d

e
ls

p-value

< 0.01

< 0.05

< 0.1

≥ 0.1

Note: Values depict the accuracy improvement (accuracy worsening as highlighted in red) of the forecasts produced by the
machine learning methods relative to the forecasts from the respective econometric model in percent. Percentage accuracy
improvement (deterioration) is measured by RelRMSE. Significance of the accuracy differential is highlighted by the colored
grids. Significance is calculated by the original DM-Test test with alternative hypothesis that the machine learning methods’
forecasts are more accurate than the econometric forecasts. All machine learning models operate on information set III.

More importantly, figure 8 shows that FAVAR models are a serious competitor to machine learning meth-
ods. In fact, the one-quarter ahead forecasts of the FAVAR models even slightly outperform RF and SVR.
On the one-year horizon, they outperform SVR. If, by contrast, the FAVAR models are outperformed

4 RESULTS 36



by one of the machine learning methods, none of the accuracy improvements is statistically significant.
Nonetheless, GB outperforms both FAVAR models in all instances suggesting that GB is the most suc-
cessful forecasting model in this study. Although this paper counts FAVAR models to the econometric
family, it is important to highlight that factor models incorporate with PCA an unsupervised learn-
ing component. Based on this consideration and the clear pattern in the significance analysis, one can
conclude that machine learning methods successfully contribute to the task of macroeconomic forecasting.

This section has demonstrated that machine learning techniques successfully extract patterns entailed
in past realizations of macroeconomic variables for the prediction of future GDP growth. The results in
this paper support the hypothesis that machine learning can make important contributions to the field
of macroeconomic forecasting. When they are exposed to rich information sets they tend to outperform
(often significantly) more traditional time series models. One crucial question remains open. How do
machine learning models perform in times of crisis? The following subsection focuses on this issue.

4.2.2 Performance in Crisis

In normal times of positive economic growth, traditional forecasting models tend to produce reliable
projections and some structural models even allow to uncover causal channels (Chauvet & Potter, 2013).
The great weak spot of existing models has been their incapability to forecast times of recession as it has
been highlighted in the introduction of this paper. Therefore, it is paramount to conduct an out-of-sample
assessment with special focus on a period of economic crisis. In this way, it is hoped to gain some further
insights into the different models’ capability to forecast times of economic crisis.

Figure 9 and figure 10 visualize the one-quarter ahead and one-year ahead forecasts in the period of
the past financial crisis which, according to NBER, lasted from the first quarter of 2008 until the second
quarter of 2009 (gray-shaded area). Several insights can be gained from the visualizations. First of all, the
figures show prediction intervals based on 95% confidence level for the probabilistic time series models.
Since machine learning methods are non-probabilistic, one cannot directly quantify the uncertainty asso-
ciated with machine learning forecasts. This problem can be mitigated by using bootstrapped confidence
intervals which, in case of RF, even result as by-product of the algorithm. However, for demonstrational
purposes, the intervals for RF are kept aside in order to highlight the fundamental difference between the
probabilistic and the algorithmic class of models with the latter class not being able to directly display
the uncertainty associated with a point forecast.

It becomes also obvious that in times of negative GDP growth, econometric one-quarter ahead forecasts
tend to clearly lag the actual observations. The strong U.S. downturn in the fourth quarter of 2008 with
a contraction of more than 2% is missed by almost all econometric models. Only one to two periods later
- after the crisis has been revealed to the models - they forecast a recession albeit smaller in magnitude.
This behavior is owed to the autocorrelative structure of the models. The only exception to this behavior
is the S&W FAVAR model which forecasts negative GDP growth at an early stage on the one-quarter
horizon.31 In the one-year ahead forecasting scenario, the econometric time series formulations tend to
level off due to the convergence of the autoregressive part to the series’ long-term mean. This shows that
time series models tend to be rather unsuitable for long-term forecasting.

Machine learning methods, in contrast, indicate more promising results. Although they are not capable
of forecasting the magnitude of the crisis, they tend to grasp the emergence of a recession at least one-
quarter ahead where all of the three machine learning models forecast a small decline in GDP growth
at an early stage. GB even forecasts a recession with a projection of -0.7% for the fourth quarter of
2008. This shows that GB is competitive with the well-performing S&W FAVAR model. On the one-year
horizon, RF and SVR behave similar to the econometric models and fail to foresee the crisis. However,
this is not true for the GB model. GB is the only model which is capable of forecasting a recession on the
one-year horizon. In fact, it forecasts a decline in GDP of -0.5% in the fourth quarter of 2008 one year
in advance. The good forecasting results of the S&W FAVAR model, in contrast, vanish on the one-year
horizon.

If one refrains from forecasting the exact magnitude of GDP growth but focuses only on the sign of the
forecast and analyzes whether the forecast sign matches the sign of the actual GDP figure, the picture
becomes even clearer. This approach is interesting since it resembles the task of recession detection more

31Although the Full FAVAR model forecasts a decline in real GDP growth at an early stage, it clearly projects a recession
only after the crisis has been revealed to it.
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Figure 9: One-quarter ahead Forecasts in Global Financial Crisis
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Note: Figure shows one-quarter ahead out-of-sample forecasts around the global financial crisis produced by different
models. Solid green line corresponds to the forecasted values, green-shaded area shows the prediction intervals at the 95%
confidence level (if applicable) and the dashed black line shows the actual value. The gray-shaded area indicates the official
U.S. recession period starting in the first quarter of 2008 and lasting until the second quarter of 2009 according to NBER.
All machine learning models operate on information set III.

closely. Table 8 shows the fraction of correctly forecasted GDP growth signs during the U.S. recession of
2008 - 2009. On the one-quarter horizon, only the S&W FAVAR as well as the GB model are capable of
outperforming the näıve RW forecasts. In fact, both models miss only one period and forecast the wrong
sign. However, on the one-year horizon, only GB continues to outperform RW. In four out of six periods,
it forecasts the right sign. All other models, including S&W FAVAR, produce very poor sign forecasts.
In fact, they only forecast the correct sign in one of the six recession quarters. Thus, they are even out-
performed by RW which produces two correct sign forecasts. The sign forecast analysis generally shows
that macroeconomic forecasting models indeed underperform in times of crisis. This is especially true
for longer forecasting horizons. However, the results in this paper suggest that forecasting models which
can cope with high dimensional data can contribute decisively to improving macroeconomic forecasting.
One promising candidate is Gradient Boosting which yields the best forecasting results within the scope
of this paper.

Despite the good results of GB, it is not possible to draw any conclusion concerning the question whether
the model would have predicted the global financial crisis of 2007 - 2009. This is the case since there
is no real-time data available for all of the 210 features. Without real-time data, the model does not
run on the same information that was available to researchers prior to the crisis. In fact, the analysis
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Figure 10: One-year ahead Forecasts in Global Financial Crisis
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Note: Figure shows one-year ahead out-of-sample forecasts around the global financial crisis produced by different models.
Solid green line corresponds to the forecasted values, green-shaded area shows the prediction intervals at the 95% confidence
level (if applicable) and the dashed black line shows the actual value. The gray-shaded area indicates the official U.S.
recession period starting in the first of quarter 2008 and lasting until the second quarter of 2009 according to NBER. All
machine learning models operate on information set III.

Table 8: Sign Forecast in Global Financial Crisis

Model 1-quarter ahead 1-year ahead

RW 3\6 2\6
ARIMA 3\6 1\6
LI VAR 3\6 1\6
NK VAR 3\6 1\6
Full FAVAR 3\6 1\6
S&W FAVAR 5\6 1\6
RF 3\6 1\6
GB 5\6 4\6
SVR 2\6 1\6

Note: Table shows the number of periods in which the sign of U.S. GDP growth during the six quarter long crisis is fore-
casted correctly by the respective model. According to NBER, the global financial crisis comprises the periods 2018-Q1 to
2019-Q2. All machine learning models operate on information set III.
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in this paper is based on the latest vintage of 2019-Q2. Figure 2 suggests that observations have gone
through major revisions which makes comparisons between forecasts produced in 2007 and forecasts
produced in this paper difficult. Moreover, it makes it impossible to judge whether GB would have
predicated the upcoming global financial crisis prior to 2008. Nonetheless, the results of this paper
clearly suggest that forecasting models based on machine learning algorithms pose great potential for the
field of macroeconomic forecasting.
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5 Conclusion

Macroeconomists have often struggled to accomplish the admittedly challenging task of forecasting the
future state of the economy. In times of economic crises such as the 2007 - 2009 global financial crisis,
they have even spectacularly failed to do so. Many critics see flawed economic models and economists’
resistance to interdisciplinary cooperation at the root of this failure (Bank of England, 2016; Reis, 2018).
Given the poor track record of macroeconomic forecasting and the rise and praise of machine learning
as problem solving tool across different disciplines in recent years, this paper explores whether statistical
learning algorithms can contribute to GDP forecasting. Based on a high-dimensional dataset of the Fed-
eral Reserve Bank of St. Louis with data of the U.S. economy over the last 60 years and more than 200
distinct time series, this paper finds promising forecasting results produced by different machine learning
methods.

Methodologically, the study forecasts U.S. real GDP growth in a dynamic regression setup by means of
Random Forest, Gradient Boosting and Support Vector Regression. All of the three statistical learning
methods are designed to deal with high-dimensional data which allow to refrain from judgmental variable
selection in the building process of the forecasting model. This makes it possible to run these models on
rich information sets which more traditional theory-based models and pure time series models are usually
not capable to cope with.

In a comparison of the out-of-sample performance between machine learning methods and time series
models, this paper finds lower forecasting errors the richer the information set is machine learning meth-
ods are confronted with. If all variables in the dataset are included in the analysis, the machine learning
algorithms clearly outperform ARIMA and VAR models that can only operate on a much smaller set
of possible predictors. Moreover, the best performing supervised learning approach, Gradient Boosting,
consistently (though not significantly) outperforms FAVAR models which are able to operate on the same
high-dimensional information set. Although FAVAR models produce forecasts in a vector autoregression
setup, the extraction of factors is based on unsupervised learning techniques, only enabling them to op-
erate on high-dimensional datasets.

Including the financial crisis of 2007 - 2009 in the out-of-sample test set, the paper takes also a closer
look at the models’ performance in times of crises. It turns out that none of the models in this study
is capable of forecasting the magnitude of the global financial crisis, neither on a one-year forecasting
horizon nor on a short-term one-quarter horizon. However, Gradient Boosting is capable of predicting an
economic downturn with negative GDP growth both one-quarter ahead and even one-year ahead for the
fourth quarter of 2018. The sign forecasts of GB for the global financial crisis are promising and suggest
that GB can be useful for macroeconomic forecasts, especially as data-driven feature selection tool. In
fact, according to the feature importance measure of GB, changes in National Income and Product Ac-
counts as well as stock market movements seem to have strong forecasting importance in the short term.
One-year-ahead forecasts, in turn, can be produced most accurately from information implicitly captured
by the yield curve and information encrypted in sentiment surveys.

While this paper uses the supervised learning methods directly to forecast the target variable, future
research should explore how to align both worlds - theory-based econometric models and algorithmic
machine learning methods. In settings where economists face high-dimensional data with a large number
of potential predictors, machine learning methods can indeed assist in identifying which variables help
to explain most of the variation in the target variable. Based on this objective and data-driven feature
selection, one could elaborate more nuanced forecasting models which are built on economic theory and
incorporate the series’ autocorrelation. There are more complex machine learning methods which by con-
struction are capable of incorporating the lag structure of time series data. Recurrent Neural Network
(RNN) with their most recent variant Long Short-term Memory (LSTM), for example, are one possible
framework that could produce even more accurate macroeconomic forecasts. However, their application
often comes at the cost of interpretability. If the complexity of a model is so high that it indeed is no
more than a ‘black box’ to the user, the costs of potential accuracy gains become too heavy. For this
reason, the author sees the major challenge of future research to align economic theory with machine
learning based frameworks which are designed within reasonable bounds of complexity.

Moreover, future research should expand the analysis of machine learning based GDP growth forecasting
to a wider set of countries. As this study has shown, the application is promising for U.S. data. It
remains to be evaluated how the same analysis performs on macroeconomic data of other countries. Jung
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et al. (2018), for example, suggest that the application on the United Kingdom, Germany, Spain, Mexico,
Philippines and Vietnam also leads to forecasting improvements. Yet, an even wider set of countries
should be considered to validate the results.

Furthermore, this analysis refrains from the question of how to train forecasting algorithms most effec-
tively in light of structural breaks. Preferably, a machine learning method should only be trained with
data realized after the last major structural break. One could think of learning methods which are con-
structed in a way that allows the algorithm to detect structural breaks in the time series data. First
attempts towards this direction have been made in an OECD working paper which introduces adaptive
trees that, in case of a structural break, attaches greater weight to more recent training realizations
(Woloszko, 2018). This is another field which should be emphasized more strongly by future research.

Finally, one issue that could not be solved by this paper is the hurdle of data revisions common in research
that is based on macroeconomic data. Comparing the performance of a forecasting model which has been
used at different points in time is only possible if real-time data is available for all variables included
in the model. Machine learning methods tend to operate on large datasets with many variables. Such
methods require clear data management strategies which ensure that for all variables each reporting vin-
tage is stored and available to researchers. Only in this way can macroeconomics produce more nuanced
research results in the future.

In conclusion, this paper contributes to macroeconomic research by demonstrating that machine learning
provides useful techniques that can help with predicting future economic development and potentially
other yet unresolved research problems. In light of these results, the author advocates more interdis-
ciplinarity in the field of economics to make the best use of these rather new techniques. Researchers
should not waste this opportunity and let the call for new approaches in economics go unheard.
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Appendices

A FRED-QD Variables

Table 9: Feature Overview

Variable Description
Trans- S&W
Code Factors

Group A: NIPA

PCECC96 Real Personal Consumption Expenditures (Billions of Chained 2012 Dollars) 5
PCD GX Real personal consumption expenditures: Durable goods (Billions of Chained

2012 Dollars), deflated using PCE
5 5

PCES VX Real Personal Consumption Expenditures: Services (Billions of 2012 Dollars),
deflated using PCE

5 5

PCN DX Real Personal Consumption Expenditures: Nondurable Goods (Billions of 2012
Dollars), deflated using PCE

5 5

GPDIC1 Real Gross Private Domestic Investment, 3 decimal (Billions of Chained 2012
Dollars)

5

FP IX Real private fixed investment (Billions of Chained 2012 Dollars), deflated using
PCE

5

Y033RC1Q027SBE AX Real Gross Private Domestic Investment: Fixed Investment: Nonresidential:
Equipment (Billions of Chained 2012 Dollars), deflated using PCE

5 5

PNF IX Real private fixed investment: Nonresidential (Billions of Chained 2012 Dol-
lars), deflated using PCE

5 5

PRF IX Real private fixed investment: Residential (Billions of Chained 2012 Dollars),
deflated using PCE

5 5

A014RE1Q156NBEA Shares of gross domestic product: Gross private domestic investment: Change
in private inventories (Percent)

2 5

GCEC1 Real Government Consumption Expenditures & Gross Investment (Billions of
Chained 2012 Dollars)

5

A823RL1Q225SBEA Real Government Consumption Expenditures and Gross Investment: Federal
(Percent Change from Preceding Period)

1 5

FGRECP TX Real Federal Government Current Receipts (Billions of Chained 2012 Dollars),
deflated using PCE

5 5

SLC EX Real government state and local consumption expenditures (Billions of Chained
2012 Dollars), deflated using PCE

5 5

EXPGSC1 Real Exports of Goods & Services, 3 Decimal (Billions of Chained 2012 Dollars) 5 5
IMPGSC1 Real Imports of Goods & Services, 3 Decimal (Billions of Chained 2012 Dollars) 5 5
DPIC96 Real Disposable Personal Income (Billions of Chained 2012 Dollars) 5
OUTNFB Nonfarm Business Sector: Real Output (Index 2012=100) 5
OUTBS Business Sector: Real Output (Index 2012=100) 5
B020RE1Q156NBEA Shares of gross domestic product: Exports of goods and services (Percent) 2
B021RE1Q156NBEA Shares of gross domestic product: Imports of goods and services (Percent) 2

Group B: Industrial Production

INDPRO Industrial Production Index (Index 2012=100) 5
IPFINAL Industrial Production: Final Products (Market Group) (Index 2012=100) 5
IPCONGD Industrial Production: Consumer Goods (Index 2012=100) 5
IPMAT Industrial Production: Materials (Index 2012=100) 5
IPDMAT Industrial Production: Durable Materials (Index 2012=100) 5 5
IPNMAT Industrial Production: Nondurable Materials (Index 2012=100) 5 5
IPDCONGD Industrial Production: Durable Consumer Goods (Index 2012=100) 5 5
IPB51110SQ Industrial Production: Durable Goods: Automotive products (Index

2012=100)
5 5

IPNCONGD Industrial Production: Nondurable Consumer Goods (Index 2012=100) 5 5
IPBUSEQ Industrial Production: Business Equipment (Index 2012=100) 5 5
IPB51220SQ Industrial Production: Consumer energy products (Index 2012=100) 5 5
CUMFNS Capacity Utilization: Manufacturing (SIC) (Percent of Capacity) 2 5
IPMANSICS Industrial Production: Manufacturing (SIC) (Index 2012=100) 5
IPB51222S Industrial Production: Residential Utilities (Index 2012=100) 5
IPFUELS Industrial Production: Fuels (Index 2012=100) 5

Group C: Employment and Unemployment

PAYEMS All Employees: Total nonfarm (Thousands of Persons) 5
USPRIV All Employees: Total Private Industries (Thousands of Persons) 5
MANEMP All Employees: Manufacturing (Thousands of Persons) 5
SRVPRD All Employees: Service-Providing Industries (Thousands of Persons) 5
USGOOD All Employees: Goods-Producing Industries (Thousands of Persons) 5
DMANEMP All Employees: Durable goods (Thousands of Persons) 5 5
NDMANEMP All Employees: Nondurable goods (Thousands of Persons) 5
USCONS All Employees: Construction (Thousands of Persons) 5 5
USEHS All Employees: Education & Health Services (Thousands of Persons) 5 5
USFIRE All Employees: Financial Activities (Thousands of Persons) 5 5
USINFO All Employees: Information Services (Thousands of Persons) 5 5
USPBS All Employees: Professional & Business Services (Thousands of Persons) 5 5
USLAH All Employees: Leisure & Hospitality (Thousands of Persons) 5 5
USSERV All Employees: Other Services (Thousands of Persons) 5 5
USMINE All Employees: Mining and logging (Thousands of Persons) 5 5
USTPU All Employees: Trade, Transportation & Utilities (Thousands of Persons) 5 5
USGOVT All Employees: Government (Thousands of Persons) 5
USTRADE All Employees: Retail Trade (Thousands of Persons) 5 5
USWTRADE All Employees: Wholesale Trade (Thousands of Persons) 5 5
CES9091000001 All Employees: Government: Federal (Thousands of Persons) 5 5
CES9092000001 All Employees: Government: State Government (Thousands of Persons) 5 5
CES9093000001 All Employees: Government: Local Government (Thousands of Persons) 5 5
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CE16OV Civilian Employment (Thousands of Persons) 5
CIVPART Civilian Labor Force Participation Rate (Percent) 2
UNRATE Civilian Unemployment Rate (Percent) 2
UNRATES TX Unemployment Rate less than 27 weeks (Percent) 2
UNRATEL TX Unemployment Rate for more than 27 weeks (Percent) 2
LNS14000012 Unemployment Rate - 16 to 19 years (Percent) 2 5
LNS14000025 Unemployment Rate - 20 years and over, Men (Percent) 2 5
LNS14000026 Unemployment Rate - 20 years and over, Women (Percent) 2 5
UEMPLT5 Number of Civilians Unemployed - Less Than 5 Weeks (Thousands of Persons) 5 5
UEMP5TO14 Number of Civilians Unemployed for 5 to 14 Weeks (Thousands of Persons) 5 5
UEMP15T26 Number of Civilians Unemployed for 15 to 26 Weeks (Thousands of Persons) 5 5
UEMP27OV Number of Civilians Unemployed for 27 Weeks and Over (Thousands of Per-

sons)
5 5

LNS12032194 Employment Level - Part-Time for Economic Reasons, All Industries (Thou-
sands of Persons)

5 5

HOABS Business Sector: Hours of All Persons (Index 2012=100) 5
HOANBS Nonfarm Business Sector: Hours of All Persons (Index 2012=100) 5
AWHMAN Average Weekly Hours of Production and Nonsupervisory Employees: Manu-

facturing (Hours)
5 5

AWOTMAN Average Weekly Overtime Hours of Production and Nonsupervisory Employees:
Manufacturing (Hours)

2 5

UEMPMEAN Average (Mean) Duration of Unemployment (Weeks) 2
CES0600000007 Average Weekly Hours of Production and Nonsupervisory Employees: Goods-

Producing
2

HWIURATI OX Ratio of Help Wanted/No. Unemployed 2
CLAIM SX Initial Claims 5

Group D: Housing

HOUST Housing Starts: Total: New Privately Owned Housing Units Started (Thou-
sands of Units)

5

HOUST5F Privately Owned Housing Starts: 5-Unit Structures or More (Thousands of
Units)

5

HOUSTMW Housing Starts in Midwest Census Region (Thousands of Units) 5 5
HOUSTNE Housing Starts in Northeast Census Region (Thousands of Units) 5 5
HOUSTS Housing Starts in South Census Region (Thousands of Units) 5 5
HOUSTW Housing Starts in West Census Region (Thousands of Units) 5 5

Group E: Inventories, Orders, and Sales

CMRMTSP LX Real Manufacturing and Trade Industries Sales (Millions of Chained 2012 Dol-
lars)

5

RSAF SX Real Retail and Food Services Sales (Millions of Chained 2012 Dollars), deflated
by Core PCE

5 5

AMDMN OX Real Manufacturers’ New Orders: Durable Goods (Millions of 2012 Dollars),
deflated by Core PCE

5 5

AMDMU OX Real Value of Manufacturers’ Unfilled Orders for Durable Goods Industries
(Millions of 2012 Dollars), deflated by Core PCE

5 5

BUSIN VX Total Business Inventories (Millions of Dollars) 5
ISRATI OX Total Business: Inventories to Sales Ratio 2

Group F: Prices

PCECTPI Personal Consumption Expenditures: Chain-type Price Index (Index
2012=100)

6

PCEPILFE Personal Consumption Expenditures Excluding Food and Energy (Chain-Type
Price Index) (Index 2012=100)

6

GDPCTPI Gross Domestic Product: Chain-type Price Index (Index 2012=100) 6
GPDICTPI Gross Private Domestic Investment: Chain-type Price Index (Index 2012=100) 6 5
IPDBS Business Sector: Implicit Price Deflator (Index 2012=100) 6 5
DGDSRG3Q086SBEA Personal consumption expenditures: Goods (chain-type price index) 6
DDURRG3Q086SBEA Personal consumption expenditures: Durable goods (chain-type price index) 6
DSERRG3Q086SBEA Personal consumption expenditures: Services (chain-type price index) 6
DNDGRG3Q086SBEA Personal consumption expenditures: Nondurable goods (chain-type price in-

dex)
6

DHCERG3Q086SBEA Personal consumption expenditures: Services: Household consumption expen-
ditures (chain-type price index)

6

DMOTRG3Q086SBEA Personal consumption expenditures: Durable goods: Motor vehicles and parts
(chain-type price index)

6 5

DFDHRG3Q086SBEA Personal consumption expenditures: Durable goods: Furnishings and durable
household equipment (chain-type price index)

6 5

DREQRG3Q086SBEA Personal consumption expenditures: Durable goods: Recreational goods and
vehicles (chain-type price index)

6 5

DODGRG3Q086SBEA Personal consumption expenditures: Durable goods: Other durable goods
(chain-type price index)

6 5

DFXARG3Q086SBEA Personal consumption expenditures: Nondurable goods: Food and beverages
purchased for off-premises consumption (chain-type price index)

6 5

DCLORG3Q086SBEA Personal consumption expenditures: Nondurable goods: Clothing and footwear
(chain-type price index)

6 5

DGOERG3Q086SBEA Personal consumption expenditures: Nondurable goods: Gasoline and other
energy goods (chain-type price index)

6 5

DONGRG3Q086SBEA Personal consumption expenditures: Nondurable goods: Other nondurable
goods (chain-type price index)

6 5

DHUTRG3Q086SBEA Personal consumption expenditures: Services: Housing and utilities (chain-type
price index)

6 5

DHLCRG3Q086SBEA Personal consumption expenditures: Services: Health care (chain-type price
index)

6 5

DTRSRG3Q086SBEA Personal consumption expenditures: Transportation services (chain-type price
index)

6 5

DRCARG3Q086SBEA Personal consumption expenditures: Recreation services (chain-type price in-
dex)

6 5

DFSARG3Q086SBEA Personal consumption expenditures: Services: Food services and accommoda-
tions (chain-type price index)

6 5
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DIFSRG3Q086SBEA Personal consumption expenditures: Financial services and insurance (chain-
type price index)

6 5

DOTSRG3Q086SBEA Personal consumption expenditures: Other services (chain-type price index) 6 5
CPIAUCSL Consumer Price Index for All Urban Consumers: All Items (Index 1982-

84=100)
6

CPILFESL Consumer Price Index for All Urban Consumers: All Items Less Food & Energy
(Index 1982-84=100)

6

WPSFD49207 Producer Price Index by Commodity for Finished Goods (Index 1982=100) 6
PPIACO Producer Price Index for All Commodities (Index 1982=100) 6
WPSFD49502 Producer Price Index by Commodity for Finished Consumer Goods (Index

1982=100)
6 5

WPSFD4111 Producer Price Index by Commodity for Finished Consumer Foods (Index
1982=100)

6 5

PPIIDC Producer Price Index by Commodity Industrial Commodities (Index 1982=100) 6 5
WPSID61 Producer Price Index by Commodity Intermediate Materials: Supplies & Com-

ponents (Index 1982=100)
6 5

WPU0561 Producer Price Index by Commodity for Fuels and Related Products and Power:
Crude Petroleum (Domestic Production) (Index 1982=100)

5 5

OILPRIC EX Price Real Crude Oil Prices: West Texas Intermediate (WTI) - Cushing, Ok-
lahoma (2012 Dollars per Barrel), deflated by Core PCE

5

WPSID62 Price Index: Crude Materials for Further Processing (Index 1982=100) 6
PPICMM Price Index: Commodities: Metals and metal products: Primary nonferrous

metals (Index 1982=100)
6

CPIAPPSL Price Index for All Urban Consumers: Apparel (Index 1982-84=100) 6
CPITRNSL Price Index for All Urban Consumers: Transportation (Index 1982-84=100) 6
CPIMEDSL Price Index for All Urban Consumers: Medical Care (Index 1982-84=100) 6
CUSR0000SAC Price Index for All Urban Consumers: Commodities (Index 1982-84=100) 6
CUSR0000SAD Consumer Price Index for All Urban Consumers: Durables (Index 1982-

84=100)
6

CUSR0000SAS Consumer Price Index for All Urban Consumers: Services (Index 1982-84=100) 6
CPIULFSL Consumer Price Index for All Urban Consumers: All Items Less Food (Index

1982-84=100)
6

CUSR0000SA0L2 Consumer Price Index for All Urban Consumers: All items less shelter (Index
1982-84=100)

6

CUSR0000SA0L5 Consumer Price Index for All Urban Consumers: All items less medical care
(Index 1982-84=100)

6

Group G: Earnings and Productivity

CES2000000008X Real Average Hourly Earnings of Production and Nonsupervisory Employees:
Construction (2012 Dollars per Hour), deflated by Core PCE

5

CES3000000008X Real Average Hourly Earnings of Production and Nonsupervisory Employees:
Manufacturing (2012 Dollars per Hour), deflated by Core PCE

5

COMPRNFB Nonfarm Business Sector: Real Compensation Per Hour (Index 2012=100) 5 5
RCPHBS Business Sector: Real Compensation Per Hour (Index 2012=100) 5 5
OPHNFB Nonfarm Business Sector: Real Output Per Hour of All Persons (Index

2012=100)
5 5

OPHPBS Business Sector: Real Output Per Hour of All Persons (Index 2012=100) 5
ULCBS Business Sector: Unit Labor Cost (Index 2012=100) 5
ULCNFB Nonfarm Business Sector: Unit Labor Cost (Index 2012=100) 5 5
UNLPNBS Nonfarm Business Sector: Unit Nonlabor Payments (Index 2012=100) 5 5
CES0600000008 Average Hourly Earnings of Production and Nonsupervisory Employees:

Goods-Producing (Dollars per Hour)
6

Group H: Interest Rates

FEDFUNDS Effective Federal Funds Rate (Percent) Federal Funds Rate (Percent) 2 5
TB3MS 3-Month Treasury Bill: Secondary Market Rate (Percent) 2 5
TB6MS 6-Month Treasury Bill: Secondary Market Rate (Percent) 2
GS1 1-Year Treasury Constant Maturity Rate (Percent) 2
GS10 10-Year Treasury Constant Maturity Rate (Percent) 2
AAA Bond Moody’s Seasoned Aaa Corporate Bond Yield c© (Percent) 2
BAA Bond Moody’s Seasoned Baa Corporate Bond Yield c© (Percent) 2
BAA10YM Moody’s Seasoned Baa Corporate Bond Yield Relative to Yield on 10-Year

Treasury Constant Maturity (Percent)
5 5

TB6M3MX 6-Month Treasury Bill Minus 3-Month Treasury Bill, secondary market (Per-
cent)

1 5

GS1TB3MX 1-Year Treasury Constant Maturity Minus 3-Month Treasury Bill, secondary
market (Percent)

2 5

GS10TB3MX 10-Year Treasury Constant Maturity Minus 3-Month Treasury Bill, secondary
market (Percent)

2 5

CPF3MTB3MX 3-Month Commercial Paper Minus 3-Month Treasury Bill, secondary market
(Percent)

2 5

GS5 5-Year Treasury Constant Maturity Rate 2
TB3SMFFM 3-Month Treasury Constant Maturity Minus Federal Funds Rate 2
T5YFFM 5-Year Treasury Constant Maturity Minus Federal Funds Rate 1
AAAFFM Moody’s x Aaa Corporate Bond Minus Federal Funds Rate 2
CP3M 3-Month AA Financial Commercial Paper Rate 2
COMPAPFF 3-Month Commercial Paper Minus Federal Funds Rate 2

Group I: Money and Credit

AMBSLREAL St. Louis Adjusted Monetary Base (Billions of 1982-84 Dollars), deflated by
CPI

5

M1REAL Real M1 Money Stock (Billions of 1982-84 Dollars), deflated by CPI 5
M2REAL Real M2 Money Stock (Billions of 1982-84 Dollars), deflated by CPI 5
MZMREAL Real MZM Money Stock (Billions of 1982-84 Dollars), deflated by CPI 5
BUSLOAN SX Real Commercial and Industrial Loans, All Commercial Banks (Billions of 2012

U.S. Dollars), deflated by Core PCE
5 5

CONSUME RX Real Consumer Loans at All Commercial Banks (Billions of 2012 U.S. Dollars),
deflated by Core PCE

5 5

NONREVS LX Total Real Nonrevolving Credit Owned and Securitized, Outstanding (Billions
of 2012 Dollars), deflated by Core PCE

5 5
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REALL NX Real Real Estate Loans, All Commercial Banks (Billions of 2012 U.S. Dollars),
deflated by Core PCE

5 5

TOTALS LX Total Consumer Credit Outstanding (Billions of 2012 Dollars), deflated by Core
PCE

5

TOTRESNS Total Reserves of Depository Institutions (Billions of Dollars) 6
NONBORRES Reserves Of Depository Institutions, Nonborrowed (Millions of Dollars) 7
DTCOLNVHFNM Consumer Motor Vehicle Loans Outstanding Owned by Finance Companies

(Millions of Dollars)
6

DTCTHFNM Total Consumer Loans and Leases Outstanding Owned and Securitized by Fi-
nance Companies (Millions of Dollars)

6

INVEST Securities in Bank Credit at All Commercial Banks (Billions of Dollars) 6

Group J: Household Balance Sheets

TABSHN OX Real Total Assets of Households and Nonprofit Organizations (Billions of 2012
Dollars), deflated by Core PCE

5

TLBSHN OX Real Total Liabilities of Households and Nonprofit Organizations (Billions of
2012 Dollars), deflated by Core PCE

5 5

LIABP IX Liabilities of Households and Nonprofit Organizations Relative to Personal Dis-
posable Income (Percent)

5

TNWBSHN OX Real Net Worth of Households and Nonprofit Organizations (Billions of 2012
Dollars), deflated by Core PCE

5 5

NWP IX Net Worth of Households and Nonprofit Organizations Relative to Disposable
Personal Income (Percent)

5

TARES AX Real Assets of Households and Nonprofit Organizations excluding Real Estate
Assets (Billions of 2012 Dollars), deflated by Core PCE

5 5

HNOREMQ027SX Real Real Estate Assets of Households and Nonprofit Organizations (Billions
of 2012 Dollars), deflated by Core PCE

5 5

TFAABSHN OX Real Total Financial Assets of Households and Nonprofit Organizations (Bil-
lions of 2012 Dollars), deflated by Core PCE

5 5

CONSP IX Nonrevolving consumer credit to Personal Income 2

Group K: Exchange Rates

EXSZU SX Switzerland / U.S. Foreign Exchange Rate 5 5
EXJPU SX Japan / U.S. Foreign Exchange Rate 5 5
EXUSU KX U.S. / U.K. Foreign Exchange Rate 5 5
EXCAU SX Canada / U.S. Foreign Exchange Rate 5 5

Group L: Other

UMCSEN TX University of Michigan: Consumer Sentiment (Index 1st Quarter 1966=100) 5 5

Group M: Stock Markets

NIKKEI225 Nikkei Stock Average 5
S P 500 S&P’s Common Stock Price Index: Composite 5
S P INDUST S&P’s Common Stock Price Index: Industrials 5
S P DIV YIELD S&P’s Composite Common Stock: Dividend Yield 2
S P PE RATIO S&P’s Composite Common Stock: Price-Earnings Ratio 5

Group N: Non-Household Balance Sheets

TLBSNNC BX Real Nonfinancial Corporate Business Sector Liabilities (Billions of 2012 Dol-
lars), Deflated by Implicit Price Deflator for Business Sector IPDBS

5

TLBSNNCBBD IX Nonfinancial Corporate Business Sector Liabilities to Disposable Business In-
come (Percent)

2

TTAABSNNC BX Real Nonfinancial Corporate Business Sector Assets (Billions of 2012 Dollars),
Deflated by Implicit Price Deflator for Business Sector IPDBS

5

TNWMVBSNNC BX Real Nonfinancial Corporate Business Sector Net Worth (Billions of 2012 Dol-
lars), Deflated by Implicit Price Deflator for Business Sector IPDBS

5

TNWMVBSNNCBBD IX Nonfinancial Corporate Business Sector Net Worth to Disposable Business In-
come (Percent)

2

TLBSNN BX Real Nonfinancial Noncorporate Business Sector Liabilities (Billions of 2012
Dollars), Deflated by Implicit Price Deflator for Business Sector IPDBS

5

TLBSNNBBD IX Nonfinancial Noncorporate Business Sector Liabilities to Disposable Business
Income (Percent)

2

TABSNN BX Real Nonfinancial Noncorporate Business Sector Assets (Billions of 2012 Dol-
lars), Deflated by Implicit Price Deflator for Business Sector IPDBS

5

TNWBSNN BX Real Nonfinancial Noncorporate Business Sector Net Worth (Billions of 2012
Dollars), Deflated by Implicit Price Deflator for Business Sector IPDBS

5

TNWBSNNBBD IX Nonfinancial Noncorporate Business Sector Net Worth to Disposable Business
Income (Percent)

2

CNC FX Real Disposable Business Income, Billions of 2012 Dollars (Corporate cash flow
with IVA minus taxes on corporate income, deflated by Implicit Price Deflator
for Business Sector IPDBS)

5

Note: Column Trans-Code refers to the final data transformation conducted to obtain stationary time series: (1) no transformation,
(2) first-order differencing ∆xt, (3) second-order differencing ∆2xt, (4) natural logarithm log(xt), (5) first-order differencing of
natural logarithm (continuous growth) ∆log(xt), (6) second-order differencing of natural logarithm ∆2log(xt), (7) discrete growth
(xt−xt−1) / xt−1. Transformations closely follow the suggestions in McCracken and Ng (2016) but are adjusted to ensure station-
arity where necessary.
Column S&W Factor indicates which of the variables are considered in the S&W FAVAR model. This feature selection follows the
factor analysis in J. Stock and Watson (2012).
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B Leading Indicators

Figure 11: Leading Indicators and Recession Periods
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Note: Figure shows leading indicator time series from 1959-Q1 to 2019-Q2 as well as periods of recessions as highlighted
in gray according to the recession definition of NBER. Series tend to show a leading cyclicality with respect to business
cycle downturns. Units of new housing constructions (HOUST), for instance, tend to reach its peak some quarters before
a recession hits the economy.
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C Residual Analysis ARIMA

Figure 12: Visual Inspection of Residuals
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Note: Top figure shows time series of residuals resulting from an ARMA(2, 1) model. Visual inspection suggest white noise.
Bottom left figure shows the corresponding empirical Autocorrelation Function up to lag 10 with 95% confidence bands. At
lag 8, ACF shows a spike which is significant at the 5% level but insignificant at the 10% level. All other autocorrelations
are highly insignificant both in size and statistically. This suggests that all autocorrelation is captured by the model and
none is left to the residuals. Bottom right figure shows distribution of the residuals which suggests normality. The results
strongly support the model specification.

Table 10: Portmanteau Test Results

Test lags p-value

Ljung-Box 10 0.77
Box-Pierce 10 0.80

Note: Both Ljung-Box and Box-Pierce test do not allow to reject the H0 that autocorrelation in residual series is not sta-
tistically different from zero up to lag 10. This result strongly supports the model specification.
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D Principal Component Analysis

Figure 13: Scree Plot

0.05

0.10

0.15

0.20

1 2 3 4 5 6 7 8 9 10

Number of Principal Components

P
ro

p
o
rt

io
n

o
f

V
a
ri

a
n

c
e

E
x
p

la
in

e
d

Note: Figure shows explained variance of the first 10 components of the S&W FAVAR model. According to cross-validation
on training data, the optimal number of components that enter the final FAVAR model amounts to two. The first two
components explain 26.7% of the overall variance in the reduced feature space based on the S&W FAVAR variables.
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Figure 14: Loading Analysis
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Note: Figure shows loadings of the first two components on the features used in the S&W FAVAR model.
It becomes obvious that the first principal component extracts mostly information from variables belonging to National
Income and Product Accounts (NIPA), from industrial production variables, from features related to the labor market,
from the group of inventories, orders and sales as well as from household balance sheet data. The first component strongly
loads on variables from these groups in absolute value.
Loadings of the second principal component are less clear cut among the groups. However, it can be said that, in contrast to
the first component, the second component captures information from housing prices, interest rates and consumer sentiment
(variable UMCSEN TX in group Other).
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Figure 15: Search Spaces and Optimal Parameter Constellations

(a) Random Forest
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(b) Gradient Boosting
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(c) Support Vector Regression
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Note: Figure shows search results of first-stage tuning for different parameter constellations as measured by RMSE on the
training data. For this purpose, search spaces are separated into equally distanced (in case of SVR in log scale) raster and
the training RMSE is displayed for each raster in form of a heatmap. An uncolored raster indicates that random search
did not select the respective hyperparameter combination.
RMSE for RF clearly favors small trees with a large minimum terminal nodesize (nodemin) of more than 85 observations.
Given that the trees are small enough, the algorithm seems to be rather insensitive to the overall number of trees (M).
RMSE for GB rather favors deep trees with more than 8 interactions (hyperparameter depthmax). Given that the trees
are deep enough, the algorithm seems to be rather insensitive to the overall number of trees (M).
Given a sigmoid kernel, RMSE for SVR clearly favors a regularization parameter (C) within the range of (0.01, 0.1]. Given
that C is small enough, the algorithm seems to be rather insensitive to the radius of the epsilon tube (ε).
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